ebook img

Analysis of the Algerian severe weather event in November 2001 and its impact on ozone and ... PDF

14 Pages·2003·12.02 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis of the Algerian severe weather event in November 2001 and its impact on ozone and ...

teb301533/teb078 Tellus.cls October1,2003 14:29 Tellus(2003),55B,993–1006 Copyright(cid:2)C BlackwellMunksgaard,2003 PrintedinUK.Allrightsreserved TELLUS Analysis of the Algerian severe weather event in November 2001 and its impact on ozone and nitrogen dioxide distributions ∗ ByW.THOMAS1 ,F.BAIER2,T.ERBERTSEDER2 andM.KA¨STNER2,1Institutfu¨rMethodikderFern- erkundung (IMF), and 2Deutsches Fernerkundungsdatenzentrum (DFD), Deutsches Zentrum fu¨r Luft- und Raumfahrt(DLR),P.O.Box1116,D-82234Wessling,Germany (Manuscriptreceived1July2002;infinalform14April2003) ABSTRACT AnanalysisofthesevereweathereventinNovember2001overthewesternMediterraneanispresented focusingonsatellite-basedtracegasmeasurementsfromtheGlobalOzoneMonitoringExperiment (GOME)onboardtheEuropeanRemoteSensingSatellite(ERS-2).Thisstudyissupplementedby asynopticanalysisandsimulationsofthethree-dimensionalstratosphericchemicaltransportmodel ROSE.ArcticairmassesmovedrapidlyfromScandinaviatotheIberianpeninsulaandweremixedwith subtropicalairoverthestillwarmMediterraneanSea.Thiscausedseverethunderstormsandextreme rainfallalongthecoastsofMoroccoandAlgeriaandlaterontheBalearicIslands.Associatedwiththe meridionaltransportanintrusionofstratosphericairbelow3kmabovesealevelwasobserved.The maximumpotentialvorticity(PV)derivedfromUKMeteorologicalOfficeanalysisdatawasabout9.3 potentialvorticityunits(pvu)at330Kattheequatorwardpositionof35◦N.Theseveryhighvalueswent alongwithremarkablyenhancedtotalozonelevelsobtainedfromGOMEbackscattermeasurements ofcollocatedGOME/ERS-2overpasses.FurtherinvestigationofGOMEdatashowedunusuallyhigh levelsofnitrogendioxide(NO2)abovethewesternMediterranean.Wepresentanewmethodtoderive thetroposphericcontentofnitrogendioxide(NO2)fromacombinationofsatellitemeasurementsand resultsofachemicaltransportmodel.Weshowthatabouttwo-thirdofthetotalatmosphericcontentof nitrogendioxideintheobservedplumeisfoundinthetroposphere,duetolightningactivity,advection andverticaltransportinthethunderstormsfromtheplanetaryboundarylayer(PBL)toatmospheric levelsaboveclouds. 1. Introduction andnitrogendioxideduringthisweatherevent,both derivedfromGOMEnadirbackscattermeasurements, From9to11November2001,aseriesofheavythun- drewourattentiontoitandweanalyseditstemporal derstormswasobservedoverMorocco,Algeriaandthe andspatialevolutioninthestratosphereandthetro- BalearicIslandsthatcausedseveredamagetothein- posphere.Wefurtherusedthethree-dimensional(3D) frastructure,mainlyduetoflooding.Althoughheavy chemical-dynamicaltransportmodelROSE(Roseand rain and cyclones are typical events in the western Brasseur,1989)tosimulatetransportandthenitrogen Mediterraneaninwinter,morethan750peopledied dioxide background distribution in the stratosphere intheflood(“elhemla”),whichwasthesecondworst andtocomparethelatterwithGOMEmeasurements. naturaldisasterinAlgeriaduringthelast40years.The Anewmethodwasdevelopedthatcombinessatellite unusualpatternofthespatialdistributionoftotalozone observationsandROSEresultsinordertoderivethe troposphericnitrogendioxidecontent. ∗Correspondingauthor. This severe weather event originated from an e-mail:[email protected] arctic cold front along which air masses moved Tellus55B(2003),5 teb301533/teb078 Tellus.cls October1,2003 14:29 994 W.THOMASETAL. within two days over several thousand kilometres 2. Data southward from Scandinavia over the Iberian penin- sulatoNorthAfrica,wherecyclogenesisstarted.Cy- 2.1. Tracegasmeasurements clogenesis is a well known process for cut-off lows Theimpactofasevereweathereventonthechem- whenairmassesofrelativelyhighpotentialvorticity ical composition of the atmosphere is analysed us- (PV) rapidly push down southwards from polar re- ingbackscattermeasurementsfromtheGlobalOzone gions.ApproachingtheaxisofthetroughinaRossby MonitoringExperiment(GOME)onboardtheERS- waveaconversionofstaticstabilityintoabsolutevor- 2 satellite (see e.g. Burrows et al., 1999 and refer- ticitytakesplacebystretchingoftheverticalaircol- ences therein). An enhanced version of the opera- umn.Theformationofacut-offlowstartsandcoin- tionalGOMEDataProcessor(GDP)asdescribedin cidesinthiscasewiththedryintrusionofstratospheric Loyolaetal.(1997)wasusedtoderivetotalcolumnre- air,whichoccursfrequently(Kentarchosetal.,1998). sultsofozoneandnitrogendioxide.TheGOMEspec- TheseprocessesaretriggeredbyPVanomalies,asre- trometerisabletomeasuretheatmosphericcolumnar centlydescribedbyBluestein(1993).Duetothelarge- contentofanumberofminortraceconstituents(e.g. scaleRossbywavepatternozone-richairinthelower ozone, nitrogen dioxide, bromine monoxide, sulfur stratosphereistransportedsouthward. dioxide,formaldehyde,chlorinedioxide)between240 Nitrogen oxides play a key role in the formation and793nm,withspectralresolutionsvaryingfrom0.2 of tropospheric ozone, a photochemical process that to0.4nm.GOMEisanadir-lookingacross-trackscan- remarkably influences the chemical composition of ninginstrumentwithatypicalfootprintsizeofabout theatmosphere.Thequantitativecontributionsofboth 320×40km2. naturalandanthropogenictroposphericsourcesofni- Since GOME pixels cover a relatively large area, trogen dioxide to the total NO budget are not very 2 the footprints will often be partially or totally cov- well known, due to sparse ground-based measure- ered by clouds. Clouds are opaque in the UV/VIS ments.Here,satellite-basedmeasurementsmaycon- spectral range (except optically thin cirrus clouds), tributesignificantlytoprovidetroposphericnitrogen whichneedtobetakenintoaccountiftracegastotal dioxide levels on a global scale (Lauer et al., 2002; columnsareretrieved.ThecloudcoverageofaGOME Velders et al., 2001; Martin et al., 2002). Recent footprintisdeterminedbyalinearleast-squaresfitof airbornemeasurementssubstantiatedthesupposition GOMEspectratosimulatedspectrainandaroundthe that considerable contributions originate from light- oxygenA-bandbetween758and778nm.Weusea ning in thunderstorms and vertical transport of pol- relationship between the measured absorption depth lutedairmasses(i.e.NO -richair)fromtheplanetary 2 in the oxygen A-band, the cloud optical thickness, boundary layer (PBL) to higher atmospheric levels the cloud-top height and the fractional cloud cover (Huntrieseretal.,2002;Brunneretal.,2001).Atthe ofaGOMEpixelasdescribedindetailbyKuzeand tropopause level further contributions from air traf- Chance(1994).CloudcoverageresultsfromGOME fic have also to be taken into account (Schumann, can be lower than corresponding results from other 1994).IntheupperstratosphereNO ismainlypro- 2 satellitesensors(KoelemeijerandStammes,1999)but duced via atomic oxygen from nitrous oxide (N O) 2 comparereasonablywellifopticallythickcloudsare and is subsequently transported poleward into the present,asitismainlythecaseinourstudy(seee.g. lower stratosphere. There, denitrification and trans- Fig.2). portintothetropospherecontributetothemainloss ThecoreelementoftheretrievalpackageisaDOAS processes.ThedailyaveragedstratosphericNO col- 2 (DifferentialOpticalAbsorptionSpectroscopy)fitting umn is dominated by available solar insolation and technique that involves a multi-linear regression of showsapronouncedlatitudinaldependency,whiletro- GOME-measured optical densities against a number posphericNO levelsarehighlyvariableintimeand 2 of reference spectra. It provides trace gas column space. amounts along the viewing path of the instrument The trace gas retrieval technique and the ROSE (Burrowsetal.,1999).Thedifferentialabsorptionof model are described in section 2; in section 3 we trace species along the absorption path is modelled present the synoptic analysis of the troposphere and accordingtoBeer’slaw stratosphere,the3DresultsofROSE,andthederiva- tionofthetroposphericnitrogendioxidecontent.Our conclusionisgiveninsection4. dI(λ)=−I(λ)σ(λ)C(s)ds (1) Tellus55B(2003),5 teb301533/teb078 Tellus.cls October1,2003 14:29 ALGERIANSEVEREWEATHEREVENT 995 where the incremental change of intensity dI(λ) at Acommonwayofcalculatingtheverticalcolumn wavelengthλthroughaslantpathdistancedsispro- density(VCD)ofaspecies(herenitrogendioxide)is portional to the absorption cross-section σ(λ) times tocalculatefirstarepresentativeslantcolumnSC total the intensity I(λ) and the absorber column amount byaddingthefittedslantcolumnSCandaclimato- C(s).Whenthereareseveralweakabsorbers,thecon- logicalslantcolumncontentbelowclouds(ifpresent), tributionsareadditive,providedthatthetotaloptical followedbyadivisionthroughthetotalairmassfac- density remains small and therefore saturation does torAMF whichistheweightedaverageofclearsky total notoccur.Theozoneretrievalwasperformedbetween andcloudyAMFs.Aso-calledghostverticalcolumn 325and335nm,whiletheNO retrievalusedafitting (GVC) below clouds is derived from climatological 2 windowbetween425and450nm.Detailsaboutthe trace gas profiles. The vertical column density now spectralfittingcanbefoundinBurrowsetal.(1999) reads: andThomasetal.(1998). SC SC+ f ×GVC×AMF The resulting trace gas slant columns are then VCD= AMFtotal = f ×AMFc+(1− f )×AMc F converted to geometry-independent vertical column total c c c g (3) amountsthroughdivisionbyappropriateairmassfac- tors (AMF). Air mass factors describe the enhance- wheref isthecloudcoveragebetween0and1,SCthe c mentoftheabsorptionofagiventracegasduetoslant fitted slant column, GVC the ghost vertical column, pathsofincidentlightintheatmosphere: and AMF and AMF the air mass factors down to g c τ groundandtocloud-top. AMF= slant (2) Recent studies (Lambert et al., 1999; 2000) com- τ vert paringGOMEandTOMSdataagainstground-based whereτ ,τ aretheslantandtheverticaloptical measurementsindicatethattheagreementofGOME slant vert densities,respectively.Theslantopticaldensities,i.e. totalozonecolumnsiswithin2–4%forsolarzenith theAMFs,arederivedfromradiativetransfercalcula- anglesbelow70◦,whichisthecaseinourstudy.Total tionsanddonotrequireinputfromGOMEmeasure- nitrogendioxidecolumnsderivedfromGOME,other ments other than viewing geometry and geolocation satellite instruments (HALOE, POAM) and ground- information. However, AMFs depend further on the basedmeasurementsagreeingeneralwithin5–20%, albedo of the underlying surface and the altitude of but within ±5×1014 molecules cm−2 in areas of thereflectingsurface,whichcanbeeithertheground lowNO intheplanetaryboundarylayerandwithin 2 orthecloud-top,andatmosphericprofilesoftemper- ±8×1014 moleculescm−2 inareasofverylowslant ature,pressureandtracegasconcentration.Radiation columnsofnitrogendioxide.Recentstudies(Richter propagationthroughcloudsisnotconsidered.Instead, andBurrows,2002;Martinetal.,2002)showedthat clouds are treated as reflecting boundaries in the at- GOMEnitrogendioxidemeasurementspartiallysuf- mosphere. ferfrominstrumentalartefactsthatmaycauseatem- Ozone AMFs were calculated on the basis of the porallyvaryingoffsetintheslantcolumnsupto2× TOMS V7 ozone profile climatology (Klenk et al., 1015 molecules cm−2 depending on the time of the 1983;Chuetal.,1989)usingLIDORT(Spurretal., year.Thesestructures,however,appeartobesimilar 2001),andareobtainedfromlook-uptablesbyneural fromyeartoyear.ForNovember2001,aslightunder- networktechniques.Thetotalozonecontentisderived estimationofretrievedNO slantcolumnsaround4× 2 fromaniterativeprocedurethatsearchesforthebest 1014moleculescm−2canbeestimatedusingtheoffset suitedozoneprofile,i.e.theAMFasfunctionofthe determinedfor1998/1999byMartinetal.(2002). integratedprofilecontent(andanumberofothergeo- physical parameters, as mentioned above). A differ- 2.2. ThechemicaltransportmodelROSE entapproachisfollowedfornitrogendioxideAMFs, which are calculated in two steps. A fast radiative The spatial background distribution and the transfermodelcalculatesAMFson-line,considering temporal evolution of stratospheric ozone and ni- onlysinglescatteringeffects.Themultiplescattering trogen dioxide are simulated using the 3D global isthenaccountedforbymultiplicativecorrectionfac- chemical-transportmodelROSEasdescribedindetail torsthatwerederivedfromradiativetransfersimula- in Rose and Brasseur (1989), Granier and Brasseur tions(Rozanovetal.,1997),restoredfromalook-up (1991)andRieseetal.(1999).Themodelcoversthe table. relevant gas-phase stratospheric chemical processes. Tellus55B(2003),5 teb301533/teb078 Tellus.cls October1,2003 14:29 996 W.THOMASETAL. Heterogeneous processes on polar-stratospheric Thisdatasetdescribesclimatologicalzonalmean clouds and on sulfuric aerosols are also included distributionsofasub-setofspeciesrelevantforstrato- in the model. It accounts for about 100 reactions, sphericconditions.Themodel’stropopauseisdefined including oxygen, hydrogen, carbon, nitrogen, by a potential vorticity of 1.6 pvu (see section 3.2) chlorine and bromine species. The chemical rate or a potential temperature of 380 K for the tropics. constants and cross-sections are taken from Sander In order to investigate the impact of the tropopause et al. (2000). Photolysis rates are derived from a heightmodelrunswerealsoperformedforadifferent look-uptabledependingonsolarzenithangle,ozone tropopauseheightcorrespondingto3pvu(seesection columnandaltitude.Thechemicalrateequationsare 3.4).Themodelrunscoveringtheperiod6–14Novem- solved by considering a chemical equilibrium state ber2001wereinitialisedwithdatafromtheDFDnear- fortheshort-livedspecies(e.g.ClO,NO,HO,BrO). real-time(NRT)service(http://auc.dfd.dlr.de/ROSE). Asemi-implicitschemeisusedfortheintegrationof ThisNRTservicedeliversverticalozoneprofilesusing the more stable reactants (e.g. HNO , N O, NH ). GOMEtotalozonecolumndensitiesthatareassimi- 3 2 4 All short-lived species are grouped and integrated latedintoROSEonanoperationalbasis. using families, e.g. ClO =Cl+ClO, NO =NO+ x x NO . All long-lived species are transported using 2 3. Results the semi-Lagrangian scheme of Smolarkiewicz and Rasch(1991).Windandtemperaturefieldsarederived 3.1. Synopticanalysis from24-hanalysesoftheUKMeteorologicalOffice (UKMO) following Swinbank and O’Neill (1994), The meteorological situation during the weather whichareavailableforpressurelevelsfromgroundup event is characterised by strong surface winds and to0.3hPa.Thisdatasetdefinesaconsistentsynoptic heavyrainfall.Figure1(leftpanel)showsanintense state using satellite-based temperature soundings upperleveltroughthatpushesfartotheSouthwestof and radiosonde observations assimilated in a global EuropeandmeetstheAlgeriancoastfromweston9 circulationmodel(GCM). November2001.TheUKMOanalysisofthetempera- ForthisstudyweuseaROSEversionwitha5.6◦× tureandthegeopotentialheightisgivenatthe464hPa 5◦longitude–latitudesphericalgridon43log-pressure level(∼6km).TheMETEOSAT-7IR-imagefromthe levelsbetween0and60kmaltitude,resultinginaver- sameday(Fig.2,leftpanel)showsthatthecloudsys- ticalstepsizeof1.3km.Inthemodel’stroposphere tems of the frontal zone extend from Finland across all chemical species are relaxed to 2D model data CentralEuropetoSpain.Thecoldfrontmadethesur- (Brasseuretal.,1995)withatimescaleof10d. facetemperaturesinAndalusia(Spain)dropatmidday Fig.1. UKMOanalysisofthetemperatureinK(greyscale)andthegeopotentialheightingpm(isolines)at464hPa(∼6km) at12:00UTCfor9November2001(leftpanel)and10November2001(rightpanel). Tellus55B(2003),5 teb301533/teb078 Tellus.cls October1,2003 14:29 ALGERIANSEVEREWEATHEREVENT 997 Fig.2. METEOSAT-7IRdataat12:00UTCfor9November2001(leftpanel)and10November2001(rightpanel);A, Algiers. from25to18◦Candtofrostatnight.Heavyrainfall overpass time over the area is around 10:20 h local beginsattheAlgeriancoastonlate9November2001 time(herecloseto10:20UTC)oneachdayduetothe and ends at about noon on 10 November 2001. Cy- sun-synchronous polar orbit of ERS-2. High gradi- cloniccurvatureandshearvorticitydefinethepositive entsintotalozonecolumnfrompixeltopixel(several vorticityadvection(PVA)attheAlgeriancoast.This 10DU)indicatestrongdynamicactivityoverEurope. PVAimpliesadeepeningofthelow-pressuresystem Asearlyasin1950Reedshowedthatthetotalozone and a cut-off low developed with maximum poten- columnisanexcellenttracerforupperlevelweather tialvorticityinthatarea(Fig.1,rightpanel).Onits systems modulated by tropopause and lower strato- east side very warm lower air from the tropics was sphere variability. A well suited synoptic diagnosis mixed with higher cold air of arctic origin, leading quantityisthecorrespondingisentropicPVat330K to a highly unstable air mass and initiating a cyclo- (Hoskinsetal.,1985)whichisdepictedforeachday genesis with a tropical warm core which is unusual on the right panels of Fig. 3. PV is a conservative attheselatitudes.Twoprocessesintensifiedthecon- quantityinfrictionlessandadiabaticflowandtheval- vectivedevelopment:(1)thecoldmaritimearcticair uesonthe330Kisentropecorrelatewellwiththeto- crosses over the still warm Mediterranean, where it talozonecolumnatmidlatitudes(Hoodetal.,1999). picksupmoistureandmeetsmaritimesubtropicalair Theessentialphysicsoftherelationshipbetweentotal and(2)thestrongsurfacewindsfromnorth-westto- ozoneandvorticityisdescribedinVaughanandPrice wardsthemountainousAfricancoastcausedintense (1991). orographicrainfall.Figure2showsthecloudsrotating Atthebeginningoftheinvestigatedperiod,weob- aroundAlgiersduetothecut-offlowprocess.Onboth servelowozonelevelsbelow200DUoverNorthern days,9and10November2001,extraordinaryrainfall Europeon9and10November2001forminganozone ratesof126Lm−2in12hand136Lm−2in6hwere mini-hole(Figs.3aandc).Itisaccompaniedbyahigh- reported which led to the flooding disaster in Alge- pressuresystemwhichischaracterisedbyanelevated ria.Theregionalmaximumrainratein6hinAlgeria tropopause and a negative PV anomaly and governs wasmorethanthe30yearsmonthlymeanNovember the large-scale motion field (Fig. 3b). Hence, on its rainfallrateof129Lm−2. frontside(east)anupperleveltroughisformingover Scandinavia and the Baltic. It moves eastwards and rapidlyexpandsinasouth-westwarddirectionleading 3.2. OzoneandPVanalysis toenhancedozonelevelsoverSpain(Fig.3c).While ThetotalozonedistributionasderivedfromGOME the upper-level trough deepens, the tongue of high backscattermeasurementsbetween9and11Novem- PV elongates and thins with a pronounced NE–SW ber2001isshowninFig.3,leftpanels.TheGOME axis (Fig. 3d). The formation is due to equatorward Tellus55B(2003),5 teb301533/teb078 Tellus.cls October1,2003 14:29 998 W.THOMASETAL. Fig.3. GOME-measuredozonedistributionon9November2001(a),10November2001(c),11November2001(e)and corresponding isentropic potential vorticity on the 330 K surface derived from UK Meteorological Office stratospheric analysesforthesamedaysat12:00UTC(b,d,f). Tellus55B(2003),5 teb301533/teb078 Tellus.cls October1,2003 14:29 ALGERIANSEVEREWEATHEREVENT 999 Rossbywavebreaking(McIntyreandPalmer,1985). mosphere. The dynamic tropopause can be defined From10to11November2001,thestructureformed asanisosurfaceofpotentialvorticity.Hoerlingetal. byhighPVlevelsbreaksupandthetipofthetongue (1991)discusseddifferentthresholdvaluesfrom1to separates, rolling up cyclonically, forming a cut-off 3.5pvuforthedefinitionofthedynamictropopause lowcentredoverMorocco(Fig.3f).Thecoreshows whiletheWMOrecommendedthe1.6pvuisolineat high PV values of about 9.3 pvu (1 pvu = 10−6 K midlatitudes (WMO, 1985). According to Price and m2 kg−1 s−2), indicating a reservoir of polar strato- Vaughan(1993),thisisreasonablewhenstudyingcut- sphericairmassesataverypronouncedsouthernloca- offlows,asitisthecasehere.However,outsidethe tionof35◦N.AssociatedwiththeequatorwardRossby cut-offlowthe3pvuisolinemaybeamorerepresen- wavebreakingeventweobservehightotalozonecol- tativevalue.Inourcasestudythe3pvuisolineisabout umn values over Southern Spain, Morocco, Algeria 100hPahigherthanthe1.6pvuisolineintheareawith andtheMediterraneanSea(Figs.3cande).Theto- thecut-offlow,whiletheeffectislesspronouncedout- tal ozone content at these low latitudes increases by sidewherechangesarebelow25hPa.Theimpactof about 100 DU, from 280 DU on 8 November 2001 differenttropopauseheightsisdiscussedinmorede- to380DUon10November2001.On11November tailsinsections3.4and3.5.Thetropopauselowering 2001themaximumtotalozonehasdecreasedagainto withintheupperleveltroughleadstoanincreaseof 355DU. thestratosphericairreservoirandcontributestoanin- Inordertoinvestigatetheequatorwardlocationof creaseofthetotalozonecolumnamounts.Bymeans thePVmaximumfromaclimatologicalandstatisti- ofthePVasastratospherictracer,thefoldingshows cal point of view, 11 years of UKMO analysis data isentropicflowtoitswesternflank,indicatingstrato- wereexamined.Potentialvorticitywasdeterminedon sphericintrusion.AsdepictedinFig.3dthetipofthe adailybasisfrom1992to2002at35◦Nandforalllon- equatorwardpointingPVstructurebrokeawayon10 gitudesonthe330Kisentrope.DuringthisperiodPV November2001,formingacut-offlow.Forthatday, valuesreachedasimilarlevelonlyonfourdays,which Fig.4(leftpanel)showsanorth–southcross-section underlinesthestrongmeridionaltransportduringthis ofPVandpotentialtemperaturealongtheGreenwich outstandingweatherevent. meridianfrom20◦ to60◦N,basedonanalysesofthe Besideshorizontaltransportphenomenawealsoex- EuropeanCentreofMediumRangeWeatherForecast amined changes in the vertical structure of the at- (ECMWF). Fig.4. PV north–south cross-sections for 10 November 2001 at 0◦W (left panel) along the Greenwich meridian and METEOSAT-7 water vapour image (right panel) of 10 November 2001 11:30 UTC. Potential vorticity isocontours are inwhitewhileisentropesareinblack.The1.6pvuisoline(thickblackline,leftpanel)denotesthedynamicaltropopause.The nextisoline(white)correspondsto3pvuandthedifferenceto1.6pvuisshadedinbrightgrey.Thegeographicalposition ofAlgiersismarkedbytheAat36◦Nintheleftpanel.TheGreenwichmeridianat0◦Wismarkedbytheblacklineinthe METEOSAT-7image(Source:UKMetOffice). Tellus55B(2003),5 teb301533/teb078 Tellus.cls October1,2003 14:29 1000 W.THOMASETAL. The cyclogenesis around Algiers (36◦N) is asso- 3.4. ROSEsimulationsofnitrogendioxide ciatedwithasignificantenfoldingofthetropopause ROSE simulations starting on 6 November 2001 wherestratosphericozone-richairintrudesto700hPa were performed to compare simulated stratospheric on10November2001andsplitsupintotwotongues nitrogendioxidedistributionswithcoincidentGOME inthecross-section(Fig.4,leftpanel).Thisisdueto observationsduringtheperiodofinterest.Themodels thecyclonicspinofthefoldaroundtheformingcut-off tropopauseisdefinedasdescribedinsection2.2using low,whichisconfirmedbytheMETEOSAT-7water the1.6pvuorthe380Kpotentialtemperatureisoline. vapourimagefrom10November2001at11:30UTC ThedifferencesbetweenGOMENO totalcolumnre- (Fig.4,rightpanel).Thedryintrusionofstratospheric 2 sults and modelled stratospheric results can then be airintothecycloneisapparent:itformsastreamerin- usedtoestimatethetroposphericNO contentwhich dicatedbyadarknarrowbandreachingstraightfrom 2 isfurtherdiscussedinsection3.5. RussiatoMoroccoandthenspinningcyclonically. Toseparatetheeffectoftransportfromlocalchem- ical transformations we analysed the temporal de- velopment of total ozone and a tracer (chemically 3.3. Nitrogendioxideobservations passive ozone, initialised with ozone values from 5 TheNO distributionderivedfromGOMEmeasure- November 2001) for a fixed model location at 0◦E, 2 ments does not show a similar temporal and spatial 40◦N.Airmasseswithhighozoneloadingweretrans- pattern as ozone and PV in the same period. How- ported southward, as confirmed by PV analysis (see ever,on10November2001,enhancedNO levelsare section 3.1). We observe a maximum increase of 2 observedalongtheCantabriccoast(Spain)andover the simulated total ozone column during 8 to 10 Morocco(alsooverMacedonia),whichcoincideswith November 2001 and these results compare qualita- night-timelightningactivity(Fig.5,upperpanels).En- tively well with coincident GOME observations. By hancedNO concentrationsintheuppertroposphere comparingthetemporalbehaviourofozonewiththat 2 causedbylightningactivityhaverecentlybeenmea- ofthetracerweestimatethatchemicaltransformations suredbyHuntrieseretal.(2002);theseplumesmay locallyonlycontribute5%tothesimulatedchangeof persistforseveralhours.Anotherareawithhigherni- thestratosphericozonecolumn. trogendioxidelevelsisvisibleoverFrancewhichcan Recent comparisons of ROSE results with obser- beattributedtotroposphericpollution.Here,GOME vations showed that the NO temporal behaviour is 2 cloud coverage results indicate a low cloudiness of reasonably well described by the model (Sen et al., below20%providingsatellitemeasurementsdownto 1998;Toon,1991).MaximumdailyNO columnsare 2 surfacelevels.On11November2001,duringandafter simulatedaftersunset(atsurfacelevels)beforeNO 2 heavythunderstorms,anNO2plumeisobservedover isconvertedmainlyintoitsnight-timereservoirN2O5. the western Mediterranean Sea around the Balearic MinimumNO columnsarepresentaftersunrisewhen 2 IslandsandtowardstheNorth-Africancoast(Fig.5, mostoftheNO isquicklyphotolyzedintoNO,thus 2 lowerleft). loweringthetotalcontentbyoneorderofmagnitude. Beforethecoldfrontreachedtheareaon8Novem- StratospherictotalNO levelsslightlyrecoverduring 2 ber2001thetypicalNO verticalcolumnwasaround day time, typically by about 1×1014 molecules 2 (2.5–3.5)×1015 ±3.5×1014 moleculescm−2,but cm−2 h−1. To evaluate the model performance we higheroverFrance,whileanunusuallyhighmaximum compare the simulated minimum NO values with 2 totalcontentof7.27×1015 ±4.4×1014 molecules available HALOE November observations in the cm−2wasobservedon11November2001.Anegative midlatitudes (Gordley et al., 1996) for sunrise con- biasofabout−1.4×1014moleculescm−2needtobe ditions (http://haloedata.larc.nasa.gov/Haloe/home. consideredtocorrectforpossibleartefactsinGOME html).AdirectcomparisonofthespatialNO distri- 2 backscatterdata(Martinetal.,2002).Thegivenerror butionswithindependentspace-bornemeasurements levelsarederivedfromtheslantcolumnfittingpreci- iscompromisedduetomissingdataduringtheperiod sion(i.e.standarddeviation),thecorrespondingcloud ofinterest.ROSENO minimumtotalcolumnvalues 2 fittingprecisionandanassumedprecisionofAMFsof above 20 km altitude compare well with HALOE 1%whichisduetoradiativetransfermodelling.Errors measurements with model values being slightly ofreferencespectrawerenotconsidered.Theorigin higher. Model results are in excellent agreement oftheNO plumeisfurtheranalysedinsection3.5. with HALOE observations near the stratospheric 2 Tellus55B(2003),5 teb301533/teb078 Tellus.cls October1,2003 14:29 ALGERIANSEVEREWEATHEREVENT 1001 Fig.5. GOME-measurednitrogendioxidedistributionon10November2001(upperleft)and11November2001(lowerleft), andlightningstatisticsforbothonedayearlier,the9November2001(upperright)and10November2001(lowerright). SlightlyincreasedcolumndensitiesareobservedoverthestraitofGibraltarandalongtheCantabriccoaston10November 2001(upperleft),wherebothnight-timelightningactivitywasreported.On11November2001,unusuallyhighNO2column densitiesofabout7.2×1015moleculescm−2weremeasuredovertheMediterraneanSea(lowerleft).Lightningstatistics weretakenfromhttp://www.wetterzentrale.de. NO maximum around 30 km altitude. Modelled At the GOME overpass time during the period of 2 NO columns near the 100 hPa level (∼16 km) interest the temporal changes of NO due to chem- 2 2 tend to be higher than corresponding HALOE ical transformation are typically low. ROSE strato- values, but deviations stay within the known bias spheric NO columns calculated at 10:00 UTC de- 2 of HALOE. The simulated average zonal variability creasesmoothlyfrom2.1×1015moleculescm−2on of 10% for the NO column corresponds well with 6November2001to1.6×1015moleculescm−2on11 2 HALOEobservations. November2001at40◦N0◦E,whereGOME-derived Tellus55B(2003),5 teb301533/teb078 Tellus.cls October1,2003 14:29 1002 W.THOMASETAL. Fig.6. Totalstratosphericnitrogendioxidecontentfor10November2001(leftpanel)and11November2001(rightpanel) ascalculatedbyROSEatGOMElocaloverpasstimes(10:20LT).Themaximumstratosphericcontentisabout2.6×1015 moleculescm−2overtheSaharandesert,whileitisaround1.8×1015moleculescm−2intheareasouthwardoftheBalearic IslandswheremeasuredNO2valueswerehighest.Theday-to-dayvariationinthelatterarearemainssmall. NO levelswerehighest.Therefore,thetemporalres- November2001(seeFig.5,lowerleft)doesnotap- 2 olutionofUKMOanalysisdataofabout24hissuf- pearinthesimulations.Note,however,thatROSEdoes ficientlyhightodescribetheimpactofstratospheric notconsidertroposphericemissions(section2.2).The transport.Thevariationfrom10to12November2001 troposphericNO contentisfurtherdiscussedinthe 2 islowerthan5×1014moleculescm−2.ROSENO col- followingsection. 2 umnresultsatGOMEoverpasstime(10:20LT)on10 and11November2001areshowninFig.6. 3.5. Derivationandanalysisoftropospheric TheROSE-modelledspatialdistributionofNO is 2 nitrogendioxide dominated by the bulk of NO in the stratosphere 2 around30km.TherelativelylowNO columnsover Severalmethodstoderivethenitrogendioxidecon- 2 NorthernandCentralEuropeandevendowntoSpain tent in the troposphere are discussed in the litera- on10November2001canbeattributedtowave-like ture. Velders et al. (2001) apply both the so-called transport in stratospheric levels at higher latitudes. tropospheric excess method (Richter and Burrows Measured ozone fields and PV analysis indicate a 2002) and image processing technique to derive the morepronouncedmeridionaltransportinloweratmo- troposphericNO columnarcontent.Thetropospheric 2 sphericlevelsespeciallyon9November2001(Figs.3a excessmethodallowsonetoseparatetroposphericand andb).ThesimulatedNO columncontentduringthe stratospheric contributions to the total NO content 2 2 GOMEoverpasstimevariesbetween(0.9–2.6)×1015 under the assumption of a relatively stable (both in moleculescm−2fromNorthtoSouth,whichislower time and space) NO distribution over the free Pa- 2 thancorrespondingGOMEmeasurementsoutsidethe cificOcean.Laueretal.(2002)comparetropospheric NO plume over water surfaces and high latitudes. NO columnsderivedfromGOMEmeasurementsand 2 2 The strong increase of measured NO levels on 11 results of a coupled chemistry–climate model. The 2 Tellus55B(2003),5

Description:
(GOME) on board the European Remote Sensing Satellite (ERS-2). This study is supplemented by a synoptic analysis and simulations of the three-dimensional stratospheric chemical transport model. ROSE. Arctic air masses moved rapidly from Scandinavia to the Iberian peninsula and were mixed with.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.