ebook img

An Introduction to Information Theory - Alex Smola PDF

60 Pages·2013·0.33 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Information Theory - Alex Smola

Motivation Information Entropy CompressingInformation An Introduction to Information Theory CarltonDowney November12,2013 Motivation Information Entropy CompressingInformation INTRODUCTION (cid:73) Today’srecitationwillbeanintroductiontoInformation Theory (cid:73) Informationtheorystudiesthequantificationof Information (cid:73) Compression (cid:73) Transmission (cid:73) ErrorCorrection (cid:73) Gambling (cid:73) FoundedbyClaudeShannonin1948byhisclassicpaper “AMathematicalTheoryofCommunication” (cid:73) ItisanareaofmathematicswhichIthinkisparticularly elegant Motivation Information Entropy CompressingInformation OUTLINE Motivation Information Entropy MarginalEntropy JointEntropy ConditionalEntropy MutualInformation CompressingInformation PrefixCodes KLDivergence Motivation Information Entropy CompressingInformation OUTLINE Motivation Information Entropy MarginalEntropy JointEntropy ConditionalEntropy MutualInformation CompressingInformation PrefixCodes KLDivergence (cid:73) Roulette. Butwhy? theseareallfairgames (cid:73) Answer: RouletteprovidesuswiththemostInformation Motivation Information Entropy CompressingInformation MOTIVATION: CASINO (cid:73) You’reatacasino (cid:73) Youcanbetoncoins,dice,orroulette (cid:73) Coins=2possibleoutcomes. Pays2:1 (cid:73) Dice=6possibleoutcomes. Pays6:1 (cid:73) roulette=36possibleoutcomes. Pays36:1 (cid:73) Supposeyoucanpredicttheoutcomeofasinglecoin toss/diceroll/roulettespin. (cid:73) Whichwouldyouchoose? (cid:73) Answer: RouletteprovidesuswiththemostInformation Motivation Information Entropy CompressingInformation MOTIVATION: CASINO (cid:73) You’reatacasino (cid:73) Youcanbetoncoins,dice,orroulette (cid:73) Coins=2possibleoutcomes. Pays2:1 (cid:73) Dice=6possibleoutcomes. Pays6:1 (cid:73) roulette=36possibleoutcomes. Pays36:1 (cid:73) Supposeyoucanpredicttheoutcomeofasinglecoin toss/diceroll/roulettespin. (cid:73) Whichwouldyouchoose? (cid:73) Roulette. Butwhy? theseareallfairgames Motivation Information Entropy CompressingInformation MOTIVATION: CASINO (cid:73) You’reatacasino (cid:73) Youcanbetoncoins,dice,orroulette (cid:73) Coins=2possibleoutcomes. Pays2:1 (cid:73) Dice=6possibleoutcomes. Pays6:1 (cid:73) roulette=36possibleoutcomes. Pays36:1 (cid:73) Supposeyoucanpredicttheoutcomeofasinglecoin toss/diceroll/roulettespin. (cid:73) Whichwouldyouchoose? (cid:73) Roulette. Butwhy? theseareallfairgames (cid:73) Answer: RouletteprovidesuswiththemostInformation Motivation Information Entropy CompressingInformation MOTIVATION: COIN TOSS (cid:73) Considertwocoins: (cid:73) FaircoinC withP(H)=0.5,P(T)=0.5 F (cid:73) BentcoinC withP(H)=0.99,P(T)=0.01 B (cid:73) Supposeweflipbothcoins,andtheybothlandheads (cid:73) Intuitivelywearemore“surprised”or“Informed”byfirst outcome. (cid:73) WeknowC isalmostcertaintolandheads,sothe B knowledgethatitlandsheadsprovidesuswithverylittle information. Motivation Information Entropy CompressingInformation MOTIVATION: COMPRESSION (cid:73) Supposeweobserveasequenceofevents: (cid:73) Cointosses (cid:73) Wordsinalanguage (cid:73) notesinasong (cid:73) etc. (cid:73) Wewanttorecordthesequenceofeventsinthesmallest possiblespace. (cid:73) Inotherwordswewanttheshortestrepresentationwhich preservesallinformation. (cid:73) Anotherwaytothinkaboutthis: Howmuchinformation doesthesequenceofeventsactuallycontain? Motivation Information Entropy CompressingInformation MOTIVATION: COMPRESSION Tobeconcrete,considertheproblemofrecordingcointossesin unary. T,T,T,T,H Approach1: H T 0 00 00,00,00,00,0 Weused9characters

Description:
Nov 12, 2013 Today's recitation will be an introduction to Information. Theory. ▷ Information theory studies the quantification of. Information. ▻ Compression.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.