ebook img

An Indefinite Excursion in Operator Theory PDF

511 Pages·2022·3.817 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Indefinite Excursion in Operator Theory

LONDONMATHEMATICALSOCIETYLECTURENOTESERIES ManagingEditor:ProfessorEndreSu¨li,MathematicalInstitute,UniversityofOxford, WoodstockRoad,OxfordOX26GG,UnitedKingdom Thetitlesbelowareavailablefrombooksellers,orfromCambridgeUniversityPressat www.cambridge.org/mathematics 372 Moonshine:Thefirstquartercenturyandbeyond, J.LEPOWSKY,J.MCKAY&M.P.TUITE(eds) 373 Smoothness,regularityandcompleteintersection, J.MAJADAS&A.G.RODICIO 374 Geometricanalysisofhyperbolicdifferentialequations:Anintroduction, S.ALINHAC 375 Triangulatedcategories, T.HOLM,P.JØRGENSEN&R.ROUQUIER(eds) 376 Permutationpatterns, S.LINTON,N.RUSˇKUC&V.VATTER(eds) 377 AnintroductiontoGaloiscohomologyanditsapplications, G.BERHUY 378 Probabilityandmathematicalgenetics, N.H.BINGHAM&C.M.GOLDIE(eds) 379 Finiteandalgorithmicmodeltheory, J.ESPARZA,C.MICHAUX&C.STEINHORN(eds) 380 Realandcomplexsingularities, M.MANOEL,M.C.ROMEROFUSTER&C.T.CWALL(eds) 381 Symmetriesandintegrabilityofdifferenceequations, D.LEVI,P.OLVER,Z.THOMOVA& P.WINTERNITZ(eds) 382 Forcingwithrandomvariablesandproofcomplexity, J.KRAJ´ICˇEK 383 Motivicintegrationanditsinteractionswithmodeltheoryandnon-ArchimedeangeometryI, R.CLUCKERS,J.NICAISE&J.SEBAG(eds) 384 Motivicintegrationanditsinteractionswithmodeltheoryandnon-ArchimedeangeometryII, R.CLUCKERS,J.NICAISE&J.SEBAG(eds) 385 EntropyofhiddenMarkovprocessesandconnectionstodynamicalsystems, B.MARCUS,K.PETERSEN &T.WEISSMAN(eds) 386 Independence-friendlylogic, A.L.MANN,G.SANDU&M.SEVENSTER 387 GroupsStAndrews2009inBathI, C.M.CAMPBELLetal(eds) 388 GroupsStAndrews2009inBathII, C.M.CAMPBELLetal(eds) 389 Randomfieldsonthesphere, D.MARINUCCI&G.PECCATI 390 Localizationinperiodicpotentials, D.E.PELINOVSKY 391 Fusionsystemsinalgebraandtopology, M.ASCHBACHER,R.KESSAR&B.OLIVER 392 Surveysincombinatorics2011, R.CHAPMAN(ed) 393 Non-abelianfundamentalgroupsandIwasawatheory, J.COATESetal(eds) 394 Variationalproblemsindifferentialgeometry, R.BIELAWSKI,K.HOUSTON&M.SPEIGHT(eds) 395 Howgroupsgrow, A.MANN 396 Arithmeticdifferentialoperatorsoverthep-adicintegers, C.C.RALPH&S.R.SIMANCA 397 Hyperbolicgeometryandapplicationsinquantumchaosandcosmology, J.BOLTE&F.STEINER(eds) 398 Mathematicalmodelsincontactmechanics, M.SOFONEA&A.MATEI 399 Circuitdoublecoverofgraphs, C.-Q.ZHANG 400 Densespherepackings:ablueprintforformalproofs, T.HALES 401 AdoubleHallalgebraapproachtoaffinequantumSchur–Weyltheory, B.DENG,J.DU&Q.FU 402 Mathematicalaspectsoffluidmechanics, J.C.ROBINSON,J.L.RODRIGO&W.SADOWSKI(eds) 403 Foundationsofcomputationalmathematics,Budapest2011, F.CUCKER,T.KRICK,A.PINKUS& A.SZANTO(eds) 404 Operatormethodsforboundaryvalueproblems, S.HASSI,H.S.V.DESNOO&F.H.SZAFRANIEC(eds) 405 Torsors,e´talehomotopyandapplicationstorationalpoints, A.N.SKOROBOGATOV(ed) 406 Appalachiansettheory, J.CUMMINGS&E.SCHIMMERLING(eds) 407 Themaximalsubgroupsofthelow-dimensionalfiniteclassicalgroups, J.N.BRAY,D.F.HOLT& C.M.RONEY-DOUGAL 408 Complexityscience:theWarwickmaster’scourse, R.BALL,V.KOLOKOLTSOV&R.S.MACKAY(eds) 409 Surveysincombinatorics2013, S.R.BLACKBURN,S.GERKE&M.WILDON(eds) 410 Representationtheoryandharmonicanalysisofwreathproductsoffinitegroups, T.CECCHERINI-SILBERSTEIN,F.SCARABOTTI&F.TOLLI 411 Modulispaces, L.BRAMBILA-PAZ,O.GARC´IA-PRADA,P.NEWSTEAD&R.P.THOMAS(eds) 412 Automorphismsandequivalencerelationsintopologicaldynamics, D.B.ELLIS&R.ELLIS 413 Optimaltransportation, Y.OLLIVIER,H.PAJOT&C.VILLANI(eds) 414 AutomorphicformsandGaloisrepresentationsI, F.DIAMOND,P.L.KASSAEI&M.KIM(eds) 415 AutomorphicformsandGaloisrepresentationsII, F.DIAMOND,P.L.KASSAEI&M.KIM(eds) 416 Reversibilityindynamicsandgrouptheory, A.G.O’FARRELL&I.SHORT 417 Recentadvancesinalgebraicgeometry, C.D.HACON,M.MUSTAT¸A˘&M.POPA(eds) 418 TheBloch–KatoconjecturefortheRiemannzetafunction, J.COATES,A.RAGHURAM,A.SAIKIA& R.SUJATHA(eds) 419 TheCauchyproblemfornon-Lipschitzsemi-linearparabolicpartialdifferentialequations, J.C.MEYER& D.J.NEEDHAM 420 Arithmeticandgeometry, L.DIEULEFAITetal(eds) 421 O-minimalityandDiophantinegeometry, G.O.JONES&A.J.WILKIE(eds) 422 GroupsStAndrews2013, C.M.CAMPBELLetal(eds) 423 Inequalitiesforgrapheigenvalues, Z.STANIC´ 424 Surveysincombinatorics2015, A.CZUMAJetal(eds) 425 Geometry,topologyanddynamicsinnegativecurvature, C.S.ARAVINDA,F.T.FARRELL& J.-F.LAFONT(eds) 426 Lecturesonthetheoryofwaterwaves, T.BRIDGES,M.GROVES&D.NICHOLLS(eds) 427 RecentadvancesinHodgetheory, M.KERR&G.PEARLSTEIN(eds) 428 GeometryinaFre´chetcontext, C.T.J.DODSON,G.GALANIS&E.VASSILIOU 429 Sheavesandfunctionsmodulop, L.TAELMAN 430 RecentprogressinthetheoryoftheEulerandNavier–Stokesequations, J.C.ROBINSON,J.L.RODRIGO, W.SADOWSKI&A.VIDAL-LO´PEZ(eds) 431 Harmonicandsubharmonicfunctiontheoryontherealhyperbolicball, M.STOLL 432 Topicsingraphautomorphismsandreconstruction(2ndEdition), J.LAURI&R.SCAPELLATO 433 RegularandirregularholonomicD-modules, M.KASHIWARA&P.SCHAPIRA 434 Analyticsemigroupsandsemilinearinitialboundaryvalueproblems(2ndEdition), K.TAIRA 435 GradedringsandgradedGrothendieckgroups, R.HAZRAT 436 Groups,graphsandrandomwalks, T.CECCHERINI-SILBERSTEIN,M.SALVATORI& E.SAVA-HUSS(eds) 437 Dynamicsandanalyticnumbertheory, D.BADZIAHIN,A.GORODNIK&N.PEYERIMHOFF(eds) 438 Randomwalksandheatkernelsongraphs, M.T.BARLOW 439 Evolutionequations, K.AMMARI&S.GERBI(eds) 440 Surveysincombinatorics2017, A.CLAESSONetal(eds) 441 Polynomialsandthemod2SteenrodalgebraI, G.WALKER&R.M.W.WOOD 442 Polynomialsandthemod2SteenrodalgebraII, G.WALKER&R.M.W.WOOD 443 Asymptoticanalysisingeneralrelativity, T.DAUDE´,D.HA¨FNER&J.-P.NICOLAS(eds) 444 Geometricandcohomologicalgrouptheory, P.H.KROPHOLLER,I.J.LEARY,C.MART´INEZ-PE´REZ& B.E.A.NUCINKIS(eds) 445 Introductiontohiddensemi-Markovmodels, J.VANDERHOEK&R.J.ELLIOTT 446 Advancesintwo-dimensionalhomotopyandcombinatorialgrouptheory, W.METZLER& S.ROSEBROCK(eds) 447 Newdirectionsinlocallycompactgroups, P.-E.CAPRACE&N.MONOD(eds) 448 Syntheticdifferentialtopology, M.C.BUNGE,F.GAGO&A.M.SANLUIS 449 Permutationgroupsandcartesiandecompositions, C.E.PRAEGER&C.SCHNEIDER 450 Partialdifferentialequationsarisingfromphysicsandgeometry, M.BENAYEDetal(eds) 451 Topologicalmethodsingrouptheory, N.BROADDUS,M.DAVIS,J.-F.LAFONT&I.ORTIZ(eds) 452 Partialdifferentialequationsinfluidmechanics, C.L.FEFFERMAN,J.C.ROBINSON& J.L.RODRIGO(eds) 453 Stochasticstabilityofdifferentialequationsinabstractspaces, K.LIU 454 Beyondhyperbolicity, M.HAGEN,R.WEBB&H.WILTON(eds) 455 GroupsStAndrews2017inBirmingham, C.M.CAMPBELLetal(eds) 456 Surveysincombinatorics2019, A.LO,R.MYCROFT,G.PERARNAU&A.TREGLOWN(eds) 457 Shimuravarieties, T.HAINES&M.HARRIS(eds) 458 IntegrablesystemsandalgebraicgeometryI, R.DONAGI&T.SHASKA(eds) 459 IntegrablesystemsandalgebraicgeometryII, R.DONAGI&T.SHASKA(eds) 460 Wigner-typetheoremsforHilbertGrassmannians, M.PANKOV 461 Analysisandgeometryongraphsandmanifolds, M.KELLER,D.LENZ&R.K.WOJCIECHOWSKI 462 ZetaandL-functionsofvarietiesandmotives, B.KAHN 463 Differentialgeometryinthelarge, O.DEARRICOTTetal(eds) 464 Lecturesonorthogonalpolynomialsandspecialfunctions, H.S.COHL&M.E.H.ISMAIL(eds) 465 ConstrainedWillmoresurfaces, A´.C.QUINTINO 466 Invarianceofmodulesunderautomorphismsoftheirenvelopesandcovers, A.K.SRIVASTAVA, A.TUGANBAEV&P.A.GUILASENSIO 467 ThegenesisoftheLanglandsprogram, J.MUELLER&F.SHAHIDI 468 (Co)endcalculus, F.LOREGIAN 469 Computationalcryptography, J.W.BOS&M.STAM(eds) 470 Surveysincombinatorics2021, K.K.DABROWSKIetal(eds) 471 Matrixanalysisandentrywisepositivitypreservers, A.KHARE 472 FacetsofalgebraicgeometryI, P.ALUFFIetal(eds) 473 FacetsofalgebraicgeometryII, P.ALUFFIetal(eds) 474 Equivarianttopologyandderivedalgebra, S.BALCHIN,D.BARNES,M.KE˛DZIOREK& M.SZYMIK(eds) 475 EffectiveresultsandmethodsforDiophantineequationsoverfinitelygenerateddomains, J.-H.EVERTSE&K.GYO˝RY 476 Anindefiniteexcursioninoperatortheory, A.GHEONDEA 477 Ellipticregularitytheorybyapproximationmethods, E.A.PIMENTEL 478 Recentdevelopmentsinalgebraicgeometry, H.ABBAN,G.BROWN,A.KASPRZYK&S.MORI(eds) 479 Boundedcohomologyandsimplicialvolume, C.CAMPAGNOLO,F.FOURNIER-FACIO,N.HEUER& M.MORASCHINI(eds) 480 StacksProjectExpositoryCollection(SPEC), P.BELMANS,W.HO&A.J.DEJONG(eds) 481 Surveysincombinatorics2022, A.NIXON&S.PRENDIVILLE(eds) LondonMathematicalSocietyLectureNoteSeries:476 An Indefinite Excursion in Operator Theory Geometric and Spectral Treks in Kre˘ın Spaces AURELIAN GHEONDEA BilkentUniversity,Ankara andIMAR,Bucharest UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108969031 DOI:10.1017/9781108979061 ©AurelianGheondea2022 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2022 PrintedintheUnitedKingdombyTJBooksLimited,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-108-96903-1Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. ToTiberiuConstantinescu(1955–2005)andPeterJonas(1941–2007) whosharedwithmethejoyoftrekkingthrough theindefiniterealmofoperatortheory aswellas Tomybeautifulandgenerouscountry,Roumania Contents Preface xi 1 InnerProductSpaces 1 1.1 BasicDefinitionsandProperties . . . . . . . . . . . . . . . . . . . . . . 1 1.2 TheWeakTopology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 NormedTopologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 Kre˘ınSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5 Pre-Kre˘ınSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 AngularOperators 28 2.1 SemidefiniteSubspacesandAngularOperators . . . . . . . . . . . . . . 28 2.2 ExtensionsofSemidefiniteSubspaces . . . . . . . . . . . . . . . . . . . 35 2.3 Intermezzo:MaximalAccretiveandSelfadjointExtensions . . . . . . . . 45 2.4 AUniversalityPropertyofKre˘ınSpaces . . . . . . . . . . . . . . . . . . 55 2.5 GeneralisedAngularOperators . . . . . . . . . . . . . . . . . . . . . . . 57 2.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3 SubspacesofKre˘ınSpaces 62 3.1 RegularSubspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2 Pseudo-RegularSubspaces . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3 StrongDualityofSubspaces . . . . . . . . . . . . . . . . . . . . . . . . 71 3.4 FredholmSubspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.5 IndexFormulaeforLinearRelations . . . . . . . . . . . . . . . . . . . . 81 3.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 LinearOperatorsonKre˘ınSpaces 85 4.1 TheAdjointOperator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 SomeClassesofBoundedOperators . . . . . . . . . . . . . . . . . . . . 90 4.3 ContinuityofIsometricOperators . . . . . . . . . . . . . . . . . . . . . 96 vii viii CONTENTS 4.4 DissipativeOperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.5 CayleyTransformations. . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5 SelfadjointProjectionsandUnitaryOperators 113 5.1 SelfadjointProjections . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.2 MonotoneNetsofSelfadjointProjections . . . . . . . . . . . . . . . . . 118 5.3 UnitaryOperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.4 DenseOperatorRanges . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6 TechniquesofInducedKre˘ınSpaces 134 6.1 Kre˘ınSpacesInducedbySelfadjointOperators . . . . . . . . . . . . . . 134 6.2 NevanlinnaTypeRepresentations. . . . . . . . . . . . . . . . . . . . . . 143 6.3 LinearisationofSelfadjointOperatorPencils. . . . . . . . . . . . . . . . 153 6.4 Carathe´odoryTypeRepresentations . . . . . . . . . . . . . . . . . . . . 156 6.5 ElementaryRotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.6 IsometricandUnitaryDilations. . . . . . . . . . . . . . . . . . . . . . . 178 6.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7 Plus/Minus-Operators 182 7.1 SpaceswithTwoInnerProducts . . . . . . . . . . . . . . . . . . . . . . 182 7.2 Minus-Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.3 UniformMinus-Operators . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.4 ExtensionsofUniformMinus-Operators . . . . . . . . . . . . . . . . . . 194 7.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 8 GeometryofContractiveOperators 199 8.1 ContractionsinKre˘ınSpaces . . . . . . . . . . . . . . . . . . . . . . . . 199 8.2 BoundednessofContractionsinKre˘ınSpaces . . . . . . . . . . . . . . . 204 8.3 TheAdjointofaContraction . . . . . . . . . . . . . . . . . . . . . . . . 205 8.4 TheScatteringTransform . . . . . . . . . . . . . . . . . . . . . . . . . . 209 8.5 LinearFractionalTransformations . . . . . . . . . . . . . . . . . . . . . 213 8.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 CONTENTS ix 9 InvariantMaximalSemidefiniteSubspaces 219 9.1 QuestionsandDiscussions . . . . . . . . . . . . . . . . . . . . . . . . . 219 9.2 SpectralMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 9.3 FixedPointApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 9.4 FundamentalReducibility. . . . . . . . . . . . . . . . . . . . . . . . . . 237 9.5 StrongStability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 9.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 10 HankelOperatorsandInterpolationProblems 250 10.1 AGeneralisedNehariProblem . . . . . . . . . . . . . . . . . . . . . . . 250 10.2 MoreorLessClassicalHankelOperators . . . . . . . . . . . . . . . . . 256 10.3 IntertwiningDilations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 10.4 GeneralisedInterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 263 10.5 TheBitangentialNevanlinna–PickProblem . . . . . . . . . . . . . . . . 268 10.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 11 SpectralTheoryforSelfadjointOperators 273 11.1 EigenvaluesandRootManifolds . . . . . . . . . . . . . . . . . . . . . . 273 11.2 JordanCanonicalForms . . . . . . . . . . . . . . . . . . . . . . . . . . 279 11.3 DefinitisableSelfadjointOperators . . . . . . . . . . . . . . . . . . . . . 285 11.4 Herglotz’sTheorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 11.5 TheResolventFunctionRepresentation . . . . . . . . . . . . . . . . . . 298 11.6 StieltjesInversionFormulae . . . . . . . . . . . . . . . . . . . . . . . . 303 11.7 TheSpectralFunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 11.8 DefinitisablePositiveOperators . . . . . . . . . . . . . . . . . . . . . . 318 11.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 12 Quasi-Contractions 323 12.1 GeometricPropertiesofQuasi-Contractions . . . . . . . . . . . . . . . . 323 12.2 DoubleQuasi-Contractions . . . . . . . . . . . . . . . . . . . . . . . . . 335 12.3 PolarDecompositionsofContractions . . . . . . . . . . . . . . . . . . . 339 12.4 ASpectralCharacterisationofDoubleQuasi-Contractions . . . . . . . . 342 12.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.