ebook img

An Adaptive Beamforming Time With Round Robin MAC algorithm for reducing energy PDF

17 Pages·2017·1.52 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Adaptive Beamforming Time With Round Robin MAC algorithm for reducing energy

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2018 doi:10.20944/preprints201810.0547.v1 Peer-reviewed version available at J. Sens. Actuator Netw. 2018, 7, 50; doi:10.3390/jsan7040050 Article An Adaptive Beamforming Time With Round Robin MAC algorithm for reducing energy consumption in MANET VincenzoInzillo1,(cid:5),FlorianoDeRango1,•,AlfonsoArizaQuintana2,† andAmilcareF. Santamaria1,(cid:63) 1,(cid:5) UniversityofCalabria,DIMES;[email protected] 1,• UniversityofCalabria,DIMES;[email protected] 1,(cid:63) UniversityofCalabria,DIMES;[email protected] 2,† UniversityofMalaga;[email protected] VersionOctober24,2018submittedtoPreprints Abstract: TheuseofSmartAntennaSystems(SAS)inpervasiveenvironmentssuchtheMobileAd 1 hocNetworks(MANET)hasbeenpromotedasthebestchoicetoimproveSpatialDivisionMultiple 2 Access(SDMA)andthroughput. Althoughdirectionalcommunicationsareexpectedtoprovidegreat 3 advantagesintermsofnetworkperformance,directionalMAC(MediumAccessControl)protocols 4 introduceseveralissues. Oneofthemostknownproblemsinthiscontextisrepresentedbythefact 5 that, attemptingtosolveoratleastmitigatetheproblemsintroducedbythesekindsofantennas 6 especiallyatMAClayer,alargeamountofenergyconsumptionisachieved;forexample,dueto 7 excessiveretransmissionsintroducedbyveryfrequentlyissuesuchasdeafnessandhandoff. The 8 expedientsproposedinordertoreducethesedrawbacksattemptingtolimitbeamformingtimeof 9 nodesincooperationwithaRound-Robinscheduling,cangranthighperformanceintermsoffairness 10 andthroughput. Howevertheoverallenergyconsumptioninthenetworkisnotefficentduetothe 11 staticapproach. Inviewofthis, weproposeanAdaptiveBeamformingTimewithRound-Robin 12 MACprovidingforadynamicassignmentofthebeamformingtimewiththepurposetolimitthe 13 wasteofenergyofnodes. 14 Keywords: SmartAntennaSystems,MANET,MAC,EnergyConsumption,Beamforming,Round 15 Robin 16 1. Introduction 17 Inthelatestresearchstudies,relatingtowirelessnetworkenvironments,oneofthemostsignificant 18 and,atthesametime,criticalissueisrepresentedbythemanagementofenergyconsumptionofnodes 19 thatcouldhighlylimittheoverallnetworkperformancewithreferencetoprotocolsandapplication 20 fields. Inthisregard,severalaspectsshouldbeconsideredinordertoaddresstheproblemsimpliedby 21 mainfeaturesofthiskindsofnetworksthatsignificantlyaffectthebehavioursatphysical,Medium 22 Access Control (MAC) and routing layers. For instance, let us consider Mobile Ad hoc Networks 23 (MANET); they are self-organized networks in which mobile nodes can move independently; the 24 nodesusuallymoveaccordingtoacertainmobilitypatternmodelandthemovementofanodeisnot 25 necessarilyrelatedtothemovementofothernodesinthenetwork.Usually,inMANET,omnidirectional 26 antennasareusedforcommunicationamongnodesbothfortransmissionaswellasforreception; 27 thisapproachresultsinverylimitedperformancerelatingtophysical,linkandroutinglayerstatistics 28 [1-3]. Omnidirectionalantennas,alsoknownasisotropicantennas,radiateandreceiveequallywell 29 inalldirections. Mainadvantagesofomnidirectionalantennasinclude: easeofconfigurationand 30 implementation,lowdesigningcost,veryandsimplearchitecture(hardware-less). Forinstance,in 31 cellularsystems,theyallowtoamplifycellsignalsfrommultiplecarrierswithdifferentcelltowersin 32 multiplelocations.Nevertheless,despitefromthesefewbenefitstheyintroduceaconsiderablenumber 33 ofdrawbackssuchas: limitedrangeandcoverage(impliedbylowgain),highenergyconsumption, 34 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2018 doi:10.20944/preprints201810.0547.v1 Peer-reviewed version available at J. Sens. Actuator Netw. 2018, 7, 50; doi:10.3390/jsan7040050 2of17 highinterferenceprobability(especiallyindensenetworks),veryhighperformancedependencyonthe 35 environmentsinwhichtheyareemployed(indoororoutdoor);nonetheless,omnidirectionalantennas 36 cannotexploitthebenefitsofcross-polarizationbecausetheyareverticallypolarized. Morespecifically, 37 thislastissue,contributestoincreasetheprobabilityofinterferencebetweencommunicatingnodes 38 inthechannel[4]. Fromatopologicalpointofview,thisapproachimpliesthat,thesignalgenerated 39 fromthetransmitterT,reachdesireduserswithonlyasmallpercentageoftheoverallenergysentout 40 intotheenvironment. Duetothishugenumberoflimitations,omnidirectionalantennasmaynotbe 41 efficientduetointerferencecausedbythetransmissionofpacketsinalldirections(otherthantarget 42 direction)andlimitedrangeofcommunications. 43 Figure1.Interferencecausedbyomnidirectionalantennas. The Figure 1 illustrates a wireless network scenario in which nodes use omnidirectional 44 antennas to perform communications. In particular, the transmitter node T sends to the receiver 45 Racommunicationsignalbyusinganomnidirectionalantenna;Rattemptstocapturethesignalwith 46 thesameantennamodel. Becausethetransmittersignalisradiatedinalldirectionswiththesame 47 intensity,iftherearesuchnodesintheneighboringofthetransmitter/receiver(N andN )ispossible 48 T R thattheradiatedsignaliscapturedbythesenodesthat, inturn, mayattemptacommunicationat 49 thesametime. Inthiscase,interferencesandcollisionscanoccur;theseissuescouldenhanceasthe 50 mobilityofnodesincreases. Nevertheless,inthiscase,becausenodesradiateinthesamewaytoward 51 alldirections,ahugewasteofthebatterylifeofnodesiscertainlyachieved. Themajorityofthese 52 issuescouldbepartiallymitigatedusingdirectionalantennas. Directionalantennasmaybeuseful 53 toincreasenetworkefficiencybydirectingthetransmittedpowerinthedesired/intendeddirection. 54 Directionalantennashaveagreatnumberofadvantagesoveromnidirectionalantennasinadhoc 55 networking. Byfocusingenergyonlyintheintendeddirection,directionalantennascanincreasethe 56 potentialforspatialreuseandcanprovidelongertransmissionandreceptionrangesforthesame 57 amount of power. Increased spatial reuse and longer range translates into higher ad hoc network 58 capacity(moresimultaneoustransmissionsandfewerhops),andlongerrangealsoprovidesimproved 59 connectivity[5-7]. Differentkindsofissueshavetobeinvestigatedwhendirectionalcommunications 60 occurwithrespecttothetraditionalomnidirectionalcase;problemssuchasthehiddenterminaland 61 thedeafnessproblemhavetobeproperlyhandledaswellashandoffissueimpliedbymobilityof 62 nodes. 63 (a) Deafnessproblem (b) Handoffproblem Figure2.DirectionalantennascommonissuesinMANET Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2018 doi:10.20944/preprints201810.0547.v1 Peer-reviewed version available at J. Sens. Actuator Netw. 2018, 7, 50; doi:10.3390/jsan7040050 3of17 ReferringtodirectionalMACcommunicationsinwhichDirectionalRequesttoSend(DRTS)and 64 Directional Clear to Send (DCTS) are used to perform a transmission/reception flow, a particular 65 node (deaf node) that is engaged in a certain communication, but at the same time is solicited as 66 receiverbyanothersourcenodearisesthedeafnessproblem(Fig. 2(a)). Thenodethatexperiencesthe 67 deafness(thenodeAinFig. 2(a))couldtrytoretransmitmanytimesMAClayerpackets,resulting 68 in a large amount of collisions and considerable increase of the network overhead. Furthermore, 69 due to the recurring retransmission attempts from deaf node, a large waste of energy could take 70 place, andconsequentlythisnodeconsumesitsbatterylifeinaveryshorttime, highlydegrading 71 theoverallthroughputofthenetwork. Anothercommonissuewhileusingdirectionalantennasis 72 given by the handoff problem that is usually implied by the mobility of nodes in the network. In 73 Fig. 2(b)anexampleofhandoffisillustrated: thetransmitternodeTiscommunicatingwithanode 74 R;duringthecommunicationRmovesinthepositionR’andexitoutofthetransmitterbeamand 75 consequentlythecommunicationfailsandthebeamsneedtobere-pointed. Inthiscase,ifthenode 76 in the position R’ can still be reached by T through a beam switching. If a proper mechanism of 77 synchronizationandnodepositionrefreshingisnotprovided,thedirectionalbeamremainstunedfor 78 alongtimeinanundesireddirectionduetonodemovement;forthisreason,again,alotofenergy 79 consumptionoccurs. Mostresearchers,inordertomitigatetheseundesiredphenomenaindirectional 80 contexts,demonstratedthat,throughtheemploymentofSmartAntennaSystems(SAS)insteadofthe 81 moretraditionaldirectionalantennas,itispossibletocreateanefficientsystem,exploitingtheSpatial 82 DivisionMultiplexing(SDMA)techniquethatthiskindofdeviceswellprovided. UsingSAS,higher 83 spatialreuseandbetterlinkreliabilitycanbeachieved[8-9]. IncontextsinwhichdirectionalSmart 84 AntennaSystemsareused,thebeamformingissuehavetobedeeplyinvestigated.TheuseofDRTSand 85 DCTSframesinassociationwithaDirectionalNetworkAllocatorVector(DNAV)information,helps 86 todecreasethelargeamountofcollisionsthatusuallyoccurswhenusingomnidirectionalantennas, 87 butinenvironmentsinwhichSASareemployeditmightnotbeenoughtoprovidetheseexpedients 88 [10-12]. Inthepresentpaper,weproposetoreducetheseissuesbyenhancingtheworksproposedin 89 [13-14]usingSASalongwithaRound-Robinschedulinginordertoaddressmoredetailedchallenges 90 such as the queue and the time slice problem involved by the use of the Round-Robin. The main 91 purposeoftheworkistolimitthemassiveenergyconsumptioninthenetworkand,simultaneously 92 toimprovetheoverallperformancewhenDirectionalMACprotocolsareexecutedinmedium-high 93 mobilityenvironments. 94 2. StateofArt 95 RelatingtoMAClayercommunications, themostcausesofexcessiveenergyconsumptionin 96 mobilenetworkscenariosincludetheuseofomnidirectionalantennas,dataprocessing,highprotocol 97 overhead,highlevelofinterferencesinthechannel. DataprocessingimpliesthelargeusageofCentral 98 ProcessingUnit(CPU),memory,harddrive,etc. Topartiallysolvethisissuethemostactualsolution 99 istofindatradeoffonenergyconsumptionbetweendataprocessingandradiocommunication[16]. 100 Forexample,datacompressiontechniquesareintroducedin[15]tominimizepacketlengthandsoto 101 obtainanenergysavinginradiocommunication,butthecostofcomputationisincreased. Inwork 102 [17]authorsalsohighlightthelargeprotocoloverheadintroducedbythiskindofsystems. Generally, 103 tomakeaMACprotocolenergyefficient,atleastoneofthefollowingguidelinesareused: 104 • Reducingcollisionsandretransmissions:OneofthemostcommonobjectiveofMACprotocols 105 inordertoavoidcollisionssothattwointerferingnodesdonottransmitatthesametime. The 106 simplestwaysforcollisionavoidanceinageneralnetworkincludecodedivisionmultipleaccess 107 (CDMA),timedivisionmultipleaccess(TDMA),andfrequencydivisionmultipleaccess(FDMA). 108 Sincecollisionavoidancemaytranslateintoasubstantialoverhead,whichwillburnmoreenergy, 109 tradeoffsmustbeexploredtoachievereasonablesolution. 110 • Reducing overhearing: Wireless mobile nodes deplet battery life because they overhear the 111 transmissionsoftheirneighbors. Therefore,themobilenodesreceiveallpacketsthathittheir 112 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2018 doi:10.20944/preprints201810.0547.v1 Peer-reviewed version available at J. Sens. Actuator Netw. 2018, 7, 50; doi:10.3390/jsan7040050 4of17 receivers. One possible solution to this problem is the introduction of a control channel for 113 the transmission of control signals that will wake up the nodes only when needed. Authors 114 in[18]proposetobroadcastaschedulethatcontainsthedatatransmissionstartingtimesfor 115 eachmobilenodes. Inwork[19]twoschemesareproposedinordertomitigatethedeafness 116 causedbypersistenthearingofdataandforhandlingtheShortRetryLimit(SRL)indirectional 117 environments. 118 • Minimize control overhead: Protocol overhead should be reduced as much as possible, 119 especiallyfortransmittingshortpackets[20-22]. Duetothelargechannelacquisitionoverhead, 120 smallpacketshavedisproportionatelyhighenergycosts. Whenmobilenodesrequestmultiple 121 transmissionslotswithasinglereservationpacket,thecontroloverheadforreservationcanbe 122 reduced[23]. ApacketdeliveryschedulingalgorithmandtwoMACprotocolsinwhichnodes 123 usesdirectionalsectorizedantennasareproposedin[24]. Theschedulerandtheprotocolsare 124 designedwiththepurposetopreventtheco-siteinterferenceproblemthatcouldariseinsome 125 directionalcontextsalsobylimitingtheoveralloverheadinthenetwork. 126 • Reducingbeamformingtime: In[25]authors,proposeaToneDMACmechanismthatenable 127 thetransmissionofspecialpackets(Out-ofbandtones)bynodesinomnidirectionalmode;these 128 tonescanbeprocessedbyneighborsreducingconsiderablythelargebackofftimeintroducedby 129 deafness. In [14] a sectorized antenna model based on a round-robin scheduling algorithm 130 is presented in order to reduce the impact of the deafness in directional communication 131 environments. TheRound-Robinmechanismwasimplementedbyanalgorithm,thatmanages 132 theassignmentofthebeamtowardacertainsectoralsohandlingtheincomingframesthatcould 133 nottemporallybetransmittedinthechannel(incasetheyareoutsidefromthecurrentactive 134 sector)byusingwaitqueues. 135 Figure3.Round-RobinMACprinciple. TheFigure3illustratestheRound-RobinMAC(RR-MAC)principle. TheplaneisdividedintoN 136 equalsectors,eachonehavingacertainamplitudew(sectorwidth)andabeamformingduration 137 time T (sectortime)withi = 1...N; N isthenumberofsectorsinwhichtheplaneisdivided. 138 i Notethatallsectorshavethesamewidthaswellasthesamesectortime;eachnodethatbelongs 139 toacertainsectorbeamformswithanangleα untilthesectortimeisreached,thenitswitchesto 140 i thenextsector. Thesectorinwhichthebeamiscurrentlyactiveisdefinedcurrentactivesector. 141 2.1. MobilityissuesdirectionalMACworks 142 Otherapproaches,suchasthework[26],attempttoreducethehandoffissuethroughanefficient 143 beamsystemcontrol; asimilarworkispresentedin[27]; inthispaper, authorstrytomitigatethe 144 handoffproblembyproposingapredictivelocationmodelinordertoadvancethefutureposition 145 movements of the nodes. Nevertheless, these works are suitable for Vehicular ad Hoc Network 146 (VANET)environmentsanddonotproperlyaddressthedeafnessproblemwhichisveryrelevantin 147 MANET.In[28]weintroduceapredictivelocationmechanismthatalsoprovidesforaframescheduler 148 withpriorityinordertoreducethehandoffproblem. However,inthiscase,theenergyconsumption 149 ofnodesisnotconsidered. 150 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2018 doi:10.20944/preprints201810.0547.v1 Peer-reviewed version available at J. Sens. Actuator Netw. 2018, 7, 50; doi:10.3390/jsan7040050 5of17 3. OmnidirectionalandDirectionalantennasvsRound-RobinMAC 151 As largely mentioned in the previous sections, networks containing nodes equipped with 152 omnidirectionalantennasarepronetohighwasteofenergybecausetheshapeoftheradiationpattern 153 thatdoesnotbeamformonlyaspecificdirection. Althoughdifferentproposalsthereexistwiththe 154 aimtosolveoratleast,mitigatetheissuesderivedfromtheuseofomnidirectionalanddirectional 155 antennasatMAClayer,amoredeeplyanalysisisrequiredforhighlightingtheissuesthatneedtobe 156 addressed. Forexample,letusconsiderthework[14],thatattemptstomitigatetheoverallnetwork 157 energyconsumptionusingaSASantennamodulealongwithaRound-Robinscheduleralgorithm. 158 Basically,itworksfineundertwomainassumptions: 159 Assumption1. nodesareequippedwithhigh-efficienthardwareantennas(SAS). 160 Assumption2. datatrafficandnodesareuniformlydistributedamongsectors. 161 Assumption3. thesizeofthesectorqueuesarefixedandequalsforallsectors. 162 Inordertoevaluatetheimplicationsofthefirstassumptionitcanbeusefultoanalyzethebehavior 163 oftheRR-MACincasetheomnidirectionalantennaisusedinplaceofdirectionalorSAStechnologies. 164 Forthispurpose,weevaluate,throughtheuseoftheOmnet++Networksimulator[29],theenergy 165 consumptionofnodesofthreedifferentrunconfigurationsusingthesamesimulationparameters 166 describedin[14](themostofthethemareillustratedintable1insubsection5.2ofthepresentpaper); 167 inordertoaccomplishtheanalysis,energysimulationmoduleshavebeeninsertedintoeachmobile 168 nodeforallowingtheemulationofthebatterylifetimebehavior. Theinitialenergyvalueofeachnode 169 wassetto300J,theshutdownenergyvaluewassetto0J;inthisway, anodeshutdownswhena 170 nodecompletelydepletesitsbatterylife. Inthefirstconfigurationrunnodesareequippedwiththe 171 classicalomnidirectionalantenna;inthesecond,nodesusetheomnidirectionalantennatogetherwith 172 theRR-MACscheduling;thelatestrunconfigurationissimilartothesecondexceptfromthefactthat 173 inthiscasetheantennaistheSASmoduledesignedin[30]. 174 Figure4.Residualcapacityprogression. TheFigure4depictstheresidualcapacity(averagedbyallnodes)plotcomparisonbetweenthe 175 threeconsideredcases. Aswecanexpect,whenusingtheomnidirectionalantennawithoutanyenergy 176 savingmechanism,nodesdeplettheirbatterylifeveryquickly;whentheomnidirectionalantennas 177 areusedincooperationwithRR-MACtheaveragedepletiontimeisalmostdoubled(t=190s)and 178 improvessignificantlywhenSASareemployedbynodes. ThisismainlyduetothefactthatRR-MAC 179 limitsthebeamformingtimeforeachsectortranslatingintoareductionofthenumbercollisionsand 180 interferences. Then,weinvestigateabouttheassumptions2and3. Inparticular,theseassumptions 181 implythatthesystemcouldbeaffectedfromthequeuesizeandthewaitingqueuetimeproblems[31] 182 thatcanaffecttheoverallnetworkconsumptioninthenetwork. Weanalyzetheseissuesbycreating 183 twomorerunconfigurations: inthefirstonemobilenodesareuniformlydistributedinthenetwork 184 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2018 doi:10.20944/preprints201810.0547.v1 Peer-reviewed version available at J. Sens. Actuator Netw. 2018, 7, 50; doi:10.3390/jsan7040050 6of17 scenario;alsotheactivitydegreeofthenodesisuniformlydistributedamongsectors;inthesecond, 185 instead,nodesareperiodicallyconcentratedinacertainsector(randomlychosen)ofthesectorized 186 planeandtheactivitydegreeofnodesisunbalancedamongsectors. Thenumberofsectorsinthe 187 planevariesfrom3to8whilethequeuesizeisevaluatedbasedonthefollowingequation: 188 Queuesize = Q×[N+w (N )] w ∈W (1) Q s Q Q ThequeuesizeisfunctionofthenumberofnodesNandthenumberofsectorsN intheplane. 189 s Qisavaluechosenintheinterval0.1 ≤ Q ≤ 0.25inordertomaximizethePacketDeliveryRatio 190 performanceof[14]. Thenumberofsectorsisweightedbythetermw thatvariesfrom1to6asthe 191 Q numberofsectorvalueincreases. Inparticular,giventhenumberofsectorarrayS = [3,4,5,6,7,8],the 192 weightvectorW isexpressedby: 193 Q W = [1,2,3,4,5,6] (2) Q Inordertoassesstheimpactofthetwosimulationscenariosrelatingtothequeueissues, we 194 comparethewaitingqueuetimeofthetworunningconfigurationsinfunctionofthenumberofsectors 195 andqueuesize. 196 (a) Averagewaitingqueuetimevsnumberofsectors (b) AveragewaitingqueuetimevsQueuesize Figure5.QueueissueswithRound-Robinscheduling. The Figure 5 illustrates the average waiting queue time in function of the number of sectors. 197 ThewaitingqueuetimeisaveragedbyvaryingtheQparameterfrom0.1to0.25. InFig. 3itcanbe 198 observedthatthewaitingqueuetimeinthecaseofnotuniformdistributednodesremainshigherthan 199 theuniformcaseindependentlyfromthenumberofsectorvalue;inparticular,thegapbetweenthe 200 waitingqueuetimeofthetwoconsideredcasesseekstogrowforsectornumbervalueshigherthan 201 5. ThecurvesinFig. 4areplottedinfunctionoftheQparameterthatrepresentsaproperlyindex 202 ofthequeuesize;asitcanbededucedfromeq. 1,thehigheristheQvalue,thehigheristhequeue 203 size. AsithappensinFig. 3thewaitingqueuetimeinthecaseofnotuniformtrafficliesabovethe 204 uniformcasecurveindependentlyfromthequeuesize. However,asopposedtoFig.3,thedifference 205 betweencurveshaskeptalmostconstantasthequeuesizeincreases. Intheuniformtrafficcaseitcan 206 benotedhowthewaitingtimeslightlydecreasesforthehighestvaluesofQwhile,inthenotuniform 207 case,thedecreasecorrespondingtothesamevaluesiscloselynegligible. Insummary,asthesizeof 208 thequeuegrowsupthewaitingtimeinthenotuniformcasedoesnottendtogetsmaller,orrather, 209 thedecreasingrelatedtohighqueuesizevaluesisnotsignificant. ThetrendsevaluatedinFig. 5are 210 certainlyjustifiedbyoneofthemostcommonissuesimpliedbyaRound-Robinalgorithmscheduling: 211 thetimesliceproblem[32-33];basically,thetimeslicerepresentsthequantumassignedtoeachsector 212 (thesectortime)inequalportions;therefore,thecommunicationsarehandledinacircularwayamong 213 sectorswithoutpriority. Incaseofnotuniformdistributedtrafficifmostofmobilenodesarefocused 214 inaspecificsectoroftheplane,thecommunicationsrelatedtothatnodesareenqueueduntilthebeam 215 isallowedinthespecificsector;asconsequence,thelargestisthequantumassignedtoeachsectorthe 216 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2018 doi:10.20944/preprints201810.0547.v1 Peer-reviewed version available at J. Sens. Actuator Netw. 2018, 7, 50; doi:10.3390/jsan7040050 7of17 largestisthewaitingqueuetime. Inthesameway,asobservedin[14]ifthequantumassignedtoeach 217 sectoristoolow,thesystemwillprovidebadperformanceintermsofoverallthroughput;asimilar 218 behaviorisproducedifthequantumassignedtoeachsectorisaveragedinaspecificintervalwith 219 increasingthenumberofsectorswhichresultsinlargestwaitingqueuetimevaluesasseeninFig. 3. 220 4. Proposedmodel 221 4.1. ComparisonwithRR-MACandmotivations 222 Asexplainedinthesection3themainchallengesrelatedtotheRRapproacharereferredtothe 223 sizeofthequeuesandthedelayproducedbystatictimesliceswhichcannotbemodeledinfunction 224 ofthetrafficinthenetwork. However,asobservedin[13,14]thequantumoftimeassignedforthe 225 beamformingprocessisthesameforeachsectoraswellastheamplitudeofthewidth. Therefore, 226 inthework[14]emergesthatapropersetofthesectortimevalueaffectstheoverallperformance 227 morethanthesectorwidthchoice;thisimpliesthattimeslotassignedtosectorsneedstobecarefully 228 assignedinordertoimprovethesystemefficiency. Forthesereasonsweproposeanapproachthat 229 modifiestheoriginalRound-Robinalgorithmformulationrelativetotheevaluationofthesectortime 230 whilekeepingunchangedthesectorizationoftheplaneandthusthewidthofthesectors. Inorderto 231 understandthemodificationsintroducedwithrespecttotheRound-RobinMACalgorithmwebriefly 232 recallthemathematicalformulationofthislatter: 233 α = α =....= α i j T = T =....= T i j s (3) α (T) = α (T) =....= α(T) i i j j ∀i,j =1,2..N, i (cid:54)= j FromformulationgivenbyEq. 3itiseasytoobservethatallsectorshavethesamewidthand 234 thesamesectortimeT . TheuseofthisapproachhelpstoenhancetheMACperformanceintermsof 235 s reductionofcollisionsandfairnessimproving,resultinginaoveralldecreaseofthetotalamountof 236 energywastedbynodes. Unfortunately,RR-MACisastaticmodelanddoesnotadaptitselftothe 237 trafficchannelconditions;thiscouldrepresentalimitinscenariosinwhichnodesareconcentrated 238 inacertainsectorasverifiedintheprevioussection. Thegoalofthepresentworkistoimprovethe 239 efficiencyoftheRound-Robinschedulerintermsofenergymanagementbyprovidinganadaptive 240 beamforming time for each sector that takes into account the size of the waiting queue for each 241 sector. WedenotedthisnovelapproachasAdaptiveBeamformingTimewithRound-RobinMAC 242 (ABT-RRMAC).Tofigureouttherelevanceofusinganadaptivesectortimeassignmentletusconsider 243 thesituationdiscussedinsec. 3inwhichtwodifferentmobilenodestrafficdistribution(uniformand 244 notuniform)inthenetworkarecompared: 245 (a) Uniformnodedistribution (b) Notuniformnodedistribution Figure6.UniformnodedistributionvsnotuniformusingRound-Robinapproach. The Fig. 6(a) represents a network scenario in which mobile nodes are almost uniformly 246 distributedamongsectorsofthesectorizedplane;thecommunicationsareruledbytheRound-Robin 247 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2018 doi:10.20944/preprints201810.0547.v1 Peer-reviewed version available at J. Sens. Actuator Netw. 2018, 7, 50; doi:10.3390/jsan7040050 8of17 scheduling;therefore,thecurrentactivesectoristhesector2,thenthebeamisactiveinthatsector. As 248 noticedfromtheanalysisaccomplishedinsec. 3,assumingauniformactivitydegreeofnodes,inthis 249 case,thewaitingqueuetimeisacceptableaswellastheMAClayerperformance;inFig. 9bitcanbe 250 observedthattheoverallnodedistributionisunbalancedamongsectorsaswellastheactivitydegree 251 ofnodes. Morespecifically,mostofthemobilenodesaremainlydistributedinthesector1which, 252 asassumption,hasalsothehighestactivitydegreeamongsectors;supposingthatthecurrentactive 253 sectorisagainthesector2andthatsectorcontainsaverysmallnumberofnodeswithrespecttothe 254 sector1togetherwithaverylowburdenofactivecommunications,itmayoccuranunder-useofthe 255 allocatedresourcesinthatsector;inparticular,duetothestaticsectortimereservationassignment 256 provided by the Round-Robin algorithm (the assigned sector time is the same for all sectors), the 257 overallbeamformingprocessbecomesinefficientresultinginaconsiderabledecreasingoftheMAC 258 performanceespeciallyintermsofthroughputandenergyconsumption. Indeed,inFig. 6bitiseasy 259 toobservethat,duetounbalanceddispositionofnodesamongsectors,theenergyconsumptionin 260 sectorsS ,S ,S ,S ,S ,S (representingthe80%oftheoverallplane)isquiteinefficientbecausethe 261 2 3 4 5 7 8 beam,inthatsectorsisperformedforatimeT thatismuchhigherthantherequiredquantumoftime 262 s requiredforemptyingthequeues. Importanttohighlightthat,becauseweareanalyzingtheworst 263 conditioncase,weassumethatthescenariosillustratedinFig. 6(b)remainunchangedforalongtime 264 orchangeveryslowly. 265 4.2. ABT-RRMACformulation 266 InlightofthepreviousconsiderationsourABT-RRMACapproachmodifiestheoriginalRound 267 Robinalgorithmformulationregardingtheevaluationofthesectortimewithoutaffectingtheplane 268 sectorizationandthusthewidthofthesectors. Basically,theideaistoassignaportionoftimeforeach 269 sectorthatisproportionaltothesizeofthequeues,thatinthiscaseisnotfixedforeachsectorandcan 270 varydynamically. 271 Figure7.AdaptiveBeamformingTimeRR-MACexample. InFigure7,anexampleoftheABT-RRMACapplicationisshown.Theplaneisnormallysectorized 272 intoequalsamplitudesectorsaswellastheRoundRobinMAC.However,inthiscase,weconsider 273 trafficpatternthatisnotuniformlydistributedamongnodes;inFig.7,itisassumedthat,twoparticular 274 sectorsdenotedS andS respectivelyhavedifferentsizeoftheframewaitingqueues;inthisregard, 275 x y thetermsize denotesthesizeofthewaitingqueuerelatedtothei-thsector. Whileconsideringthe 276 qi situationinFigure7,assumingthatT andT arethebeamforming(sector)timesrelatedtothesector 277 X Y xandyrespectively,theABT-RRMACassignsthebeamformingtimesasfollows: 278 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2018 doi:10.20944/preprints201810.0547.v1 Peer-reviewed version available at J. Sens. Actuator Netw. 2018, 7, 50; doi:10.3390/jsan7040050 9of17  T1 = ∑iN=si1zseiqz.i.e.qi ×T (cid:54)= Ts ⇒ T (cid:54)= T (cid:54)=..(cid:54)= T ⇐⇒ size (cid:54)= size (cid:54)=..(cid:54)= size  TN = ∑iNs=.i.z1.esqiNzeqi ×T 1 2 N q1 q2 qN Where: 279 T = ∑N Ti (4) N i=1 ThetermTdenotesthemeanbeamformingtimeaveragedbyallsectors.Initially,thebeamforming 280 timesarethesameforallsectorsandsettoT (RR-MAC);afteratrainingphasesetto10s(thetime 281 s of convergence of the RR-MAC), the mean beamforming time and then sector times are updated 282 periodicallyinorderthatforeachsectorisassignedaquantumoftimethatisproportionaltothesize 283 ofthequeueofthatsectormultipliedbythemeanbeamformingtime. Inthisway,sectortimescanbe 284 differentandunbalancedamongthemandthemajorfractionoftimeisassignedtothesectorhaving 285 thebiggestqueuesize. Forinstance,ifweconsidertheexampleofFigure7,becausesize >size 286 qx qy thentheABT-RRMACwillassignsectortimessuchthat T > T . Themotivationofthischoiceis 287 X Y duetofactthatsize >size theservingqueuerateofS islowerthantheservingqueuerateofS ; 288 qx qy X Y consequently,S needsforabeamformingtimehigherthanS inordertoemptyitsqueue. Among 289 X Y otherthings,thischoicewilloptimizetheenergyconsumptionofnodesinthenetwork;infact,the 290 undesiredwasteofenergycausedbytheclassicRound-Robinduetothestaticmodelislimitedbythe 291 dynamicbeamformingtimeassignment. 292 4.3. ABT-RRMACimplementation 293 The ABT-RRMAC algorithm is implemented in the Omnet++ Network Simulator in the 294 DcfUpperMACmodule,thatisthemainclassinwhichthemostimportantoperationsatMAClayerare 295 provided,suchasframeandcollisionsmanagement;therefore,asexplainedin[14]thesectorizationof 296 theplaneismanagedbytheSASantennamodule(PhasedArraymodule). Thefollowingpseudo-code 297 enhancestheoriginalRound-RobinMACformulation: 298 Algorithm1ABT-RRMACpseudo-code(part1) 1: procedureINIT(numSectors) 2: numQueues←numSectors 3: CREATEQUEUES(numQueues) 4: endprocedure 1: procedureASSIGNSECTORTIME(trainingPeriod,updatePeriod,numQueues) 2: ifSim.Time()<trainingPeriod||Sim.Time()<updatePeriodthen 3: averageSectorsTime=0; 4: fori=1;i<numQueues;i++do 5: sectorTime[i]=Ts; 6: endfor 7: else 8: averageSectorsTime=computeAverageSectorsTime() 9: fori=1;i<numQueues;i++do 10: sectorTime[i]= sizeqi ×averageSectorsTime; 11: endfor ∑iN=1sizeqi 12: endif 13: endprocedure Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2018 doi:10.20944/preprints201810.0547.v1 Peer-reviewed version available at J. Sens. Actuator Netw. 2018, 7, 50; doi:10.3390/jsan7040050 10of17 Algorithm2ABT-RRMACpseudo-code(part2) 14: procedureSTARTTRANSMIT(frame) 15: intframeSector=getFrameSector(frame); 16: intcurrentActiveSector=getCurrentActiveSector(); 17: ifcurrentActiveSector!=frameSectorthen 18: queueSector[frameSector].insert(frame)//queuetheframe 19: else 20: transmissionQueue.insert(frame); 21: transmitFrame←queueSector[activeSector].front() 22: queueSector[activeSector].pop() 23: CONFIGUREANTENNA(activeSector) 24: endif 25: endprocedure 1: procedureSTARTRECEPTIONSTATE 2: CONFIGUREANTENNA(omnidirectional) 3: MACinreceptionMode 4: SCHEDULEEVENT(CSMATimer) 5: endprocedure 1: procedureRECEPTIONFRAME(frame) 2: orientation←GETORIENTATION(frame) 3: sector←GETSECTOR(orientation) 4: CONFIGUREANTENNA(sector) 5: endprocedure 1: procedureRECEIVEFRAMEFROMUPPERLAYERS(frame) 2: sector←GETSECTORFRAME(frame) 3: queueSector[sector].push_back(frame) 4: endprocedure 1: procedureMACPROCCESS 2: INIT(NumSectors) 3: STARTRECEPTIONSTATE 4: loop 5: WaitEvent 6: ifEventIsUpperFramethen 7: RECEIVEFRAMEFROMUPPERLAYERS(frame) 8: elseifEventIsLowerFramethen 9: RECEPTIONFRAME(frame) 10: elseifEndTransmissionthen 11: STARTRECEPTIONSTATE 12: elseifEndCSMA∧QueueSector(cid:54)=empty then 13: STARTTRANSMIT(frame) 14: else 15: STARTRECEPTIONSTATE 16: endif 17: endloop 18: endprocedure Atthebeginningoftheprocess,aftertheplaneissectorizedintoequalwidthsectors,thesame 299 quantum of time is assigned for all sectors (Round-Robin). If the trainingPeriod has elapsed the 300 averageSectorsTimedenotingthemeanbeamformingtimeaveragedbyallsectors,canbecomputed; 301 rememberthatthisparameterisupdatedperiodicallyafteranupdatePeriod(thatwesetto10s)has 302 passed;fromthefirsttimethattheaverageSectorsTimeiscomputed,thebeaformingtimesofthesectors 303 areassignedaccordingtoexpressiongivenbyEquation4. Thewholeoftheseoperationsareincluded 304 inAssignSectorTimefunction. ThetransmissionofframesisruledbyStartTransmitfunctioninwhich 305 thesystemchecksifthesectorforwhichisdestinedthecurrentframeisthecurrentactivesector. Iftrue, 306 itinsertstheframeinthetransmissionqueueandtransmittheframe,otherwisetheframeisqueuedin 307 itswaitingsectorqueue,anddelayeduntilitssectordoesnotbecomethecurrentactivesector. The 308

Description:
MAC algorithm for reducing energy consumption in. MANET. Vincenzo Inzillo 1, , Floriano De Rango 1,•, Alfonso Ariza Quintana 2,† and Amilcare F.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.