ebook img

Alloys and Compounds of d-Elements with Main Group Elements. Part 2 PDF

447 Pages·2001·9.197 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Alloys and Compounds of d-Elements with Main Group Elements. Part 2

Ref. p. 59] 1.5.4 3d elements and C, Si, Ge, Sn or Pb 1 1 Magnetic properties of 3d, 4d, and 5d elements, alloys and compounds 1.1 - 1.4 See Subvolume III/32A 1.5 Alloys and compounds of 3d elements with main group elements 1.5.1 - 1.5.3 See Subvolume III/32B 1.5.4 3d elements and C, Si, Ge, Sn or Pb 1.5.4.1 Introduction Phase diagram and crystal structure Phase diagrams of the binary systems have been revised in various aspects in the last decade [90m]. Solubility limits for 3d-elements and the intermediate phases are listed in Table 1. In the Tables 2 – 11, the values of the lattice parameters given are those at room temperature unless otherwise mentioned. The Pearson symbol [91v] and/or the space group are reported for those structures to which no "Strukturbericht" symbols have been given. Magnetic properties Magnetic properties of alloys and compounds between 3d elements and 4B-group elements are being investigated continuously. Only the alloys and compounds for which new data are available have been listed in the Tables 2 – 11. Arrangement of materials The arrangement of the compounds and alloys is the same as in the former edition. In the D0 (Fe Al) and L2 (Heusler alloy) types of crystal structure, the occupation of atomic 3 3 1 sites by atoms can be described in terms of four interpenetrating fcc sublattices with origins at (0 0 0), (1/4 1/4 1/4), (1/2 1/2 1/2) and (3/4 3/4 3/4), which are designated in the current convention as A, B, C, and D sublattices, respectively, though not completely unified. In the following this designation is adopted. As for the D0 structure, the sublattices D, B and A + C consist of 4a, 4b and 3 8c sites, respectively, of the space group Fm3- O5. In the former edition LB III/19C (the figure on h p.1 and the following), these A, B, C and D sublattices were designated as B, C, D and A, respectively. Landolt-Börnstein New Series III/32C 2 1.5.4 3d elements and C, Si, Ge, Sn or Pb [Ref. p. 59 Table 1. Solubility limits and intermediate phases in the binary systems of 3d elements with C, Si, Ge, Sn or Pb. See [90m] unless otherwise stated. The phase diagrams are also represented in [92b]. The crystallographic data are compiled in [91v]. Neither metastable nor impurity-stabilized phases are listed here except for the case of cementite, Fe C. If only phase names are listed, the composition 3 ranges are shown in atomic percentages of the respective 4B group elements. The terminal phases at the 4B element side are not shown, sincee the 3d elements are almost insoluble. Crystal structures are given in parentheses by the "Strukturbericht" type symbol [58p, 90m, 91v, 92b]. If these are missing, the crystal system is indicated according to the following abbreviations. mono: monoclinic, ortho: orthorhombic, rhomb: rhombohedral, hex: hexagonal, tetr: tetragonal, cub: cubic. See also [90E1] for Co-Si and Co-Ge systems. C Ti V Cr Mn (b Ti) 0-0.6% (A2) HT (V) 0-4.3% (A2) (Cr) 0-0.3% (A2) (d Mn) 0-0.1% (A2) HT (a Ti) 0-1.6% (A3) a V2C (ortho) Cr23C6 (D84) (g Mn) 0-13% (A1) HT Ti2C (cub) b V2C (L'3) Cr7C3 (D101) (b Mn) 0-0.5% (A13) HT TiC (B1) b 'V2C (hex) HT Cr3C2 (D510) (a Mn) 0-6.5% (A12) V4C3–x (rhomb) e 13.5-24.5% (?) HT VC (B1) Mn C (D8 ) 23 6 4 V6C5 (mono) g) Mn3C (D011) HT V8C7 (cub) Mn5C2 (mono) HT Mn C (D10 ) 7 3 1 Fe Co Ni (d Fe) 0-0.4% (A2) HT (a Co) 0-4.2% (A1) HT (Ni) 0-2.7% (A1) (g Fe) 0-9.06% (A1) HT (e Co) 0% (A3) (a Fe) 0-0.096% (A2) Fe C (D0 ) metastable 3 11 Si Ti V Cr Mn (b Ti) 0-3.5% (A2) HT (V) 0-7% (A2) (Cr) 0-9.5% (A2) (d Mn) 0-2% (A2) HT (a Ti) 0-0.5% (A3) V3Si (A15) Cr3Si (A15) (g Mn) 0-2.8% (A1) HT Ti3Si (tetr) V5Si3 (D8m) b Cr5Si3 (?) HT (b Mn) 0-16.7% (A13) HT Ti5Si3 (D88) V6Si5 (ortho) HT a Cr5Si3 (D8m) (a Mn) 0-6% (A12) Ti5Si4 (tetr) VSi2 (C40) CrSi (B20) R 12-15.75% (rhomb) TiSi (B27) CrSi2 (C40) n 16.2-18.75 (ortho) TiSi2 (C54) b Mn3Si (D03) HT a Mn Si (?) 3 Mn Si (tetr) 5 2 Mn Si (D8 ) 5 3 8 MnSi (B20) MnSi (tetr) b) 1.75–x Landolt-Börnstein New Series III/32C Ref. p. 59] 1.5.4 3d elements and C, Si, Ge, Sn or Pb 3 Si Fe Co Ni (g Fe) 0-3.2 (A1) HT (a Co) 0-16.4% (A1) HT (Ni) 0-15.8% (A1) (a Fe) 0-19.5% (A2) (e Co) 0-18.4% (A3) b Ni Si (L1 ) 1 4 2 a 10-22% (B2) Co Si (tetr) HT b Ni Si (mono) HT 2 3 2 3 a 10-30% (D0 ) b Co Si (?) HT b Ni Si (mono) HT 1 3 2 3 3 b Fe Si (hex) HT a Co Si (C23) g Ni Si (hex) 2 2 31 12 h Fe Si (D8 ) HT CoSi (B20) d Ni Si (ortho) 5 3 8 2 e FeSi (B20) CoSi2 (C1) q Ni2Si (hex) HT g) z a FeSi2 (tetr) HT f) e 'Ni3Si2 (?) HT z b FeSi2 (ortho) f) e Ni3Si2 (ortho) NiSi (B31) b NiSi (?) HT 2 a NiSi (C1) 2 Ge Ti V Cr Mn (b Ti) 0-? (A2) HT (V) 0-4.5% (A2) (Cr) 0-11% (A2) (d Mn) 0-3.3% (A2) HT (a Ti) 0-? (A3) V3Ge (A15) Cr3Ge (A15) (g Mn) 0-13% (A1) HT Ti5Ge3 (D88) V5Ge3 (D8m) b Cr5Ge3 (D8m) HT (b Mn) 0-9% (A13) HT Ti6Ge5 (ortho) V11Ge8 (ortho) a Cr5Ge3 (hex?) (a Mn) 0-1.5% (A12) TiGe2 (C54) V17Ge31 (tetr) Cr11Ge8 (ortho) e Mn3Ge (D019) HT c) CrGe (B20) e -Mn Ge (D0 ) c) 1 3 22 Cr11Ge19 (tetr) z Mn Ge with sub-phases 2.6 z and z (hex) HT [87K2] 1 2 k Mn Ge (ortho) [84O1] 5 2 c Mn Ge (B8 ) HT 2 2 h Mn Ge (D8 ) 5 3 8 q Mn Ge (ortho) [84O2] 11 8 Fe Co Ni (g Fe) 0-3.4% (A1) HT (a Co) 0-17.5% (A1) HT (Ni) 0-12% (A1) (a Fe) 0-17.5% (A2) (e Co) 0-18% (A3) b Ni Ge (L1 ) 3 2 a 10-22% (B2) Co Ge (A15?) HT g Ni Ge (?) HT 2 3 3 a 1 15.2-22% (D03) Co5Ge2 (hex) HT d Ni5Ge2 (hex) HT e Fe3Ge (D019) HT a Co5Ge3 (ortho) Ni2Ge (C23) e 'Fe3Ge (L12) HT b Co5Ge3 (B82) e Ni5Ge3 (B81) HT b 33.5-41% (B81) CoGe (mono) e 'Ni5Ge3 (mono) h 40.8-43.5% (B82) HT Co5Ge7 (tetr) Ni19Ge12 (mono) HT Fe6Ge5 (mono) CoGe2 (ortho) g) Ni3Ge2 (B81) HT FeGe (mono) HT NiGe (B31) (B35) HT (B20) FeGe (C16) 2 Landolt-Börnstein New Series III/32C 4 1.5.4 3d elements and C, Si, Ge, Sn or Pb [Ref. p. 59 Sn Ti V Cr Mn (b Ti) 0-17.5% (A2) HT (V) 0-16% (A2) (Cr) 0-2% (A2) (d Mn) 0-10% (A2) HT (a Ti) 0-12.5% (A3) "V3Sn" 20-21% (A15) (g Mn) 0-7% (A1) HT Ti3Sn (D019) V2Sn3 (Cb=Mg2Cu) a) (b Mn) 0-11% (A13) HT Ti2Sn (B82) (a Mn) 0-1% (A12) Ti5Sn3 (D88) Mn3Sn (D019) d) b Ti Sn (hex) HT Mn Sn (B8 ) e) 6 5 2 2 a Ti Sn (ortho) MnSn (C16) 6 5 2 Fe Co Ni (g Fe) 0-0.8% (A1) HT (a Co) 0-2% (A1) HT (Ni) 0-10.6% (A1) (a Fe) 0-9.2% (A2) (e Co) 0-0.2% (A3) Ni3Sn (hex) HT Fe5Sn3 (B82) HT b Co3Sn2 (B81) HT Ni3Sn (D019) Fe3Sn2 (rhomb) HT a Co3Sn2 (ortho) Ni3Sn2 (hex) HT FeSn (B35) CoSn (B35) Ni3Sn2 (B81) FeSn2 (C16) CoSn2 (C16) Ni3Sn4 (mono) Pb Ti V Cr Mn (b Ti) 0-16% (A2) HT insoluble insoluble insoluble (a Ti) 0-4.2% (A3) Ti Pb 4 (D0 ) 19 Ti Pb (?) 2 Fe Co Ni insoluble insoluble insoluble a) See also [94W2] for the composition. b) Also designated as MnSi2–x or MnSi» 1.7. c) See [88Y2] for the transition temperature. d) Composition range is more Mn-rich than Mn Sn. 3 e) Also designated as Mn Sn . 7 4 f) Sometimes designated as a or b FeSi2, instead of z a or z b FeSi2. g) See also [91C1] for space groups. 1.5.4.2 Ti and V alloys and compounds Though progress is seen in thermal, structural, or electrical investigation and in high-pressure synthesis of new compounds, rather few relevant magnetic data are available. The former includes the identification of the symmetry of an ordered structure in a cubic, B1 (NaCl) type compound TiC with carbon vacancy to be of the space group R3m [92T1], as well as new data on the lattice 0.59 constants of TiSn , which are referred to in a work on resistivity measurements and listed in Table 2. 2 Landolt-Börnstein New Series III/32C 4 1.5.4 3d elements and C, Si, Ge, Sn or Pb [Ref. p. 59 Sn Ti V Cr Mn (b Ti) 0-17.5% (A2) HT (V) 0-16% (A2) (Cr) 0-2% (A2) (d Mn) 0-10% (A2) HT (a Ti) 0-12.5% (A3) "V3Sn" 20-21% (A15) (g Mn) 0-7% (A1) HT Ti3Sn (D019) V2Sn3 (Cb=Mg2Cu) a) (b Mn) 0-11% (A13) HT Ti2Sn (B82) (a Mn) 0-1% (A12) Ti5Sn3 (D88) Mn3Sn (D019) d) b Ti Sn (hex) HT Mn Sn (B8 ) e) 6 5 2 2 a Ti Sn (ortho) MnSn (C16) 6 5 2 Fe Co Ni (g Fe) 0-0.8% (A1) HT (a Co) 0-2% (A1) HT (Ni) 0-10.6% (A1) (a Fe) 0-9.2% (A2) (e Co) 0-0.2% (A3) Ni3Sn (hex) HT Fe5Sn3 (B82) HT b Co3Sn2 (B81) HT Ni3Sn (D019) Fe3Sn2 (rhomb) HT a Co3Sn2 (ortho) Ni3Sn2 (hex) HT FeSn (B35) CoSn (B35) Ni3Sn2 (B81) FeSn2 (C16) CoSn2 (C16) Ni3Sn4 (mono) Pb Ti V Cr Mn (b Ti) 0-16% (A2) HT insoluble insoluble insoluble (a Ti) 0-4.2% (A3) Ti Pb 4 (D0 ) 19 Ti Pb (?) 2 Fe Co Ni insoluble insoluble insoluble a) See also [94W2] for the composition. b) Also designated as MnSi2–x or MnSi» 1.7. c) See [88Y2] for the transition temperature. d) Composition range is more Mn-rich than Mn Sn. 3 e) Also designated as Mn Sn . 7 4 f) Sometimes designated as a or b FeSi2, instead of z a or z b FeSi2. g) See also [91C1] for space groups. 1.5.4.2 Ti and V alloys and compounds Though progress is seen in thermal, structural, or electrical investigation and in high-pressure synthesis of new compounds, rather few relevant magnetic data are available. The former includes the identification of the symmetry of an ordered structure in a cubic, B1 (NaCl) type compound TiC with carbon vacancy to be of the space group R3m [92T1], as well as new data on the lattice 0.59 constants of TiSn , which are referred to in a work on resistivity measurements and listed in Table 2. 2 Landolt-Börnstein New Series III/32C Ref. p. 59] 1.5.4 3d elements and C, Si, Ge, Sn or Pb 5 Survey Properties Figure Table TiSi a, b, c 2 2 V Si (T T)–1 (T), K(T), K(c ) 1, 2 3 1 g VSi s (H), c (T) 3, 4 2 m m Table 2. Supplement to Table 2 in LB III/19C, subsect. 1.5.4.2. Lattice constants of TiSi [87T1]. 2 TiSi 2 Crystal structure orthorhombic, C54 a [Å] 8.270 b [Å] 4.800 c [Å] 8.552 0.12 – 0.03 0 V Si 29Si inV Si 3 3 0.10 – 0.07 – 0.05 –1] K –1–1ation rate ([sTT)1000...000468 ––– 000...111951Knight shift[%]K Knight shift[%]K –– 00..1150 x a el R – 0.20 0.02 – 0.23 0 – 0.27 – 0.25 0 50 100 150 200 250 300 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 TemperatureT [K] Susceptibility c [10–6cm3g–1] g Fig. 1. V Si. Temperature dependence of the spin- 3 Fig. 2. V Si. Knight shift K of 29Si vs. magnetic mass lattice relaxation rate (T T)–1 and Knight shift K of 3 1 susceptibility c plot [86S3]. 29Si [86S3]. g Landolt-Börnstein New Series III/32C 6 1.5.4 3d elements and C, Si, Ge, Sn or Pb [Ref. p. 59 10 160 VSi HIIc VSi 2 2 150 –1] 8 –1ol] 140 HIIc ol m 3G cmm 6 –630cm 130 [sm [1cm Magnetization 24 Susceptibility 111200 H c 100 T 90 0 10 20 30 40 50 60 0 40 80 120 160 200 240 280 Magnetic fieldH[kOe] TemperatureT [K] Fig. 3. VSi2. Dependence of magnetization s m on an Fig. 4. VSi2. Temperature dependence of the molar applied magnetic field H parallel to the c axis at 4 K magnetic susceptibility c m in a magnetic field parallel [93G2]. or perpendicular to the c axis [93G2]. 1.5.4.3 Cr alloys and compounds Most of the work in the last decade is related to the spin-density-wave antiferromagnetism of Cr. Dilute alloys of Cr have been investigated extensively, as reviewed by [94F1]. See also subsect. 1.1.1.3 in LB III/19A. Survey Composition x Properties Figure Table Cr Si 0.0142...0.00343 thermal expansion D l/l(T) 5 1–x x 0.005 c (T) 6 ij 0.0185 r (T;p) 7 0.0085 Q(T) 8 0...0.0046 x-T magnetic phase diagram 9 CrSi c (T–1) 10 3 2 m CrGe Si 0...0.15 c (T) 11 1–x x g Cr Ge 0...0.0105 x-T magnetic phase diagram 12 1–x x 0.0051...0.0089 p-T magnetic phase diagram 13 Cr Sn 0.0007...0.0118 Mössbauer spectra 14 1–x x 0...0.030 x-T magnetic phase diagram 15 (Cr Si ) V 0...0.0031 thermal expansion D l/l(T) 16 0.987 0.013 1–x x (Cr Si ) Mn 0.0017…0.0232 thermal expansion D l/l(T) 17 0.987 0.013 1–x x Landolt-Börnstein New Series III/32C 6 1.5.4 3d elements and C, Si, Ge, Sn or Pb [Ref. p. 59 10 160 VSi HIIc VSi 2 2 150 –1] 8 –1ol] 140 HIIc ol m 3G cmm 6 –630cm 130 [sm [1cm Magnetization 24 Susceptibility 111200 H c 100 T 90 0 10 20 30 40 50 60 0 40 80 120 160 200 240 280 Magnetic fieldH[kOe] TemperatureT [K] Fig. 3. VSi2. Dependence of magnetization s m on an Fig. 4. VSi2. Temperature dependence of the molar applied magnetic field H parallel to the c axis at 4 K magnetic susceptibility c m in a magnetic field parallel [93G2]. or perpendicular to the c axis [93G2]. 1.5.4.3 Cr alloys and compounds Most of the work in the last decade is related to the spin-density-wave antiferromagnetism of Cr. Dilute alloys of Cr have been investigated extensively, as reviewed by [94F1]. See also subsect. 1.1.1.3 in LB III/19A. Survey Composition x Properties Figure Table Cr Si 0.0142...0.00343 thermal expansion D l/l(T) 5 1–x x 0.005 c (T) 6 ij 0.0185 r (T;p) 7 0.0085 Q(T) 8 0...0.0046 x-T magnetic phase diagram 9 CrSi c (T–1) 10 3 2 m CrGe Si 0...0.15 c (T) 11 1–x x g Cr Ge 0...0.0105 x-T magnetic phase diagram 12 1–x x 0.0051...0.0089 p-T magnetic phase diagram 13 Cr Sn 0.0007...0.0118 Mössbauer spectra 14 1–x x 0...0.030 x-T magnetic phase diagram 15 (Cr Si ) V 0...0.0031 thermal expansion D l/l(T) 16 0.987 0.013 1–x x (Cr Si ) Mn 0.0017…0.0232 thermal expansion D l/l(T) 17 0.987 0.013 1–x x Landolt-Börnstein New Series III/32C Ref. p. 59] 1.5.4 3d elements and C, Si, Ge, Sn or Pb 7 Composition x Properties Figure Table (Cr Si ) (V,Mn) 0...0.006 (V), x-T magnetic phase diagram 18 0.987 0.013 1–x x 0...0.0073 (Mn) Cr Mn Ge s (T) 19 0.79 0.21 Cr Mn Ge 0.1...0.6 x-T magnetic phase diagram 20 1–x x Table 3. Supplement to Table 4 in LB III/19C, subsect. 1.5.4.3. Magnetic and related properties of CrSi [90O1]. 2 CrSi 2 Crystal structure hexagonal, C40 a [Å] 4.242 c [Å] 6.342 Magnetism dia 15.0 Cr Si Cr Si 1-x x 0.984 0.016 12.5 10.0 T –40] x=0.0142 2(cid:215)10–4 N [1 7.5 /Dll /Dll n n ansio 5.0 0.0179 ansio p p Ex 2.5 Ex 0 0.0343 – 2.5 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 a TemperatureT [K] b TemperatureT [K] Fig. 5. Cr Si . Temperature dependence of thermal [110] direction of a single crystal with x = 0.016 1–x x expansion D l/l (a) polycrystals [88A1], (b) along the [93L1]. Landolt-Börnstein New Series III/32C 8 1.5.4 3d elements and C, Si, Ge, Sn or Pb [Ref. p. 59 4.0 1.05 Cr Si 0.995 0.005 3.8 1.04 T –2m] sf T –2m] T TN N 3.6 N N 1.03 sf 110 110 1 1 [ [ c11 c44 3.4 1.02 L T P L T P 3.2 1.01 50 150 250 350 450 50 100 150 200 250 300 350 400 a TemperatureT [K] b TemperatureT [K] 3.6 1.50 1.48 –2] 3.4 11)/2[10N m 3.2 Tsf T –211[10N m] 11..4464 Tsf T + 2c44 N )/2c12 N +(cc1112 3.0 –(c11 1.42 1.40 L T P L T P 2.8 1.38 50 150 250 350 450 50 100 150 200 250 300 350 c TemperatureT [K] d TemperatureT [K] Fig. 6. Cr Si . Temperature dependence of the wave states, respectively. The broken curves show the 0.995 0.005 elastic constants. (a) c , (b) c , (c) (c +c +2c )/2, estimated non-magnetic behaviour based on the curve 11 44 11 12 44 (d) (c –c )/2. P: paramagnetic state; T and L: for Cr–5 at% V [93A2]. 11 12 transverse and longitudinal incommensurate spin Landolt-Börnstein New Series III/32C

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.