ebook img

Algebra, Topology, Differential Calculus, and Optimization Theory For Computer Science and Engineering PDF

1896 Pages·2019·12.902 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebra, Topology, Differential Calculus, and Optimization Theory For Computer Science and Engineering

Algebra, Topology, Di(cid:11)erential Calculus, and Optimization Theory For Computer Science and Engineering Jean Gallier and Jocelyn Quaintance Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] c Jean Gallier (cid:13) July 28, 2019 2 Contents Contents 3 1 Introduction 17 2 Groups, Rings, and Fields 19 2.1 Groups, Subgroups, Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Cyclic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3 Rings and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 I Linear Algebra 43 3 Vector Spaces, Bases, Linear Maps 45 3.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 P 3.2 Indexed Families; the Sum Notation a . . . . . . . . . . . . . . . . . . 47 i I i 3.3 Linear Independence, Subspaces . . . .2 . . . . . . . . . . . . . . . . . . . . 52 3.4 Bases of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.6 Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.7 Quotient Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.8 Linear Forms and the Dual Space . . . . . . . . . . . . . . . . . . . . . . . . 78 3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4 Matrices and Linear Maps 83 4.1 Representation of Linear Maps by Matrices . . . . . . . . . . . . . . . . . . 83 4.2 Change of Basis Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.3 Haar Basis Vectors and a Glimpse at Wavelets . . . . . . . . . . . . . . . . 96 4.4 The E(cid:11)ect of a Change of Bases on Matrices . . . . . . . . . . . . . . . . . 113 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5 Direct Sums 119 5.1 Sums, Direct Sums, Direct Products . . . . . . . . . . . . . . . . . . . . . . 119 5.2 The Rank-Nullity Theorem; Grassmann’s Relation . . . . . . . . . . . . . . 128 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 3 4 CONTENTS 6 Determinants 135 6.1 Permutations, Signature of a Permutation . . . . . . . . . . . . . . . . . . . 135 6.2 Alternating Multilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.3 De(cid:12)nition of a Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.4 Inverse Matrices and Determinants . . . . . . . . . . . . . . . . . . . . . . . 149 6.5 Systems of Linear Equations and Determinants . . . . . . . . . . . . . . . . 152 6.6 Determinant of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.7 The Cayley{Hamilton Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.8 Permanents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.9 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7 Gaussian Elimination, LU, Cholesky, Echelon Form 163 7.1 Motivating Example: Curve Interpolation . . . . . . . . . . . . . . . . . . . 163 7.2 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.3 Elementary Matrices and Row Operations . . . . . . . . . . . . . . . . . . . 172 7.4 LU-Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.5 PA = LU Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 ~ 7.6 Proof of Theorem 7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.7 Dealing with Roundo(cid:11) Errors; Pivoting Strategies . . . . . . . . . . . . . . . 195 7.8 Gaussian Elimination of Tridiagonal Matrices . . . . . . . . . . . . . . . . . 196 7.9 SPD Matrices and the Cholesky Decomposition . . . . . . . . . . . . . . . . 198 7.10 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 7.11 RREF, Free Variables, Homogeneous Systems . . . . . . . . . . . . . . . . . 213 7.12 Uniqueness of RREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 7.13 Solving Linear Systems Using RREF . . . . . . . . . . . . . . . . . . . . . . 218 7.14 Elementary Matrices and Columns Operations . . . . . . . . . . . . . . . . 225 ~ 7.15 Transvections and Dilatations . . . . . . . . . . . . . . . . . . . . . . . . 226 7.16 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 7.17 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 8 Vector Norms and Matrix Norms 245 8.1 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 8.2 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 8.3 Subordinate Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 8.4 Inequalities Involving Subordinate Norms . . . . . . . . . . . . . . . . . . . 268 8.5 Condition Numbers of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 270 8.6 An Application of Norms: Inconsistent Linear Systems . . . . . . . . . . . . 279 8.7 Limits of Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . 280 8.8 The Matrix Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 8.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 9 Iterative Methods for Solving Linear Systems 295 CONTENTS 5 9.1 Convergence of Sequences of Vectors and Matrices . . . . . . . . . . . . . . 295 9.2 Convergence of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . 298 9.3 Methods of Jacobi, Gauss{Seidel, and Relaxation . . . . . . . . . . . . . . . 300 9.4 Convergence of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 9.5 Convergence Methods for Tridiagonal Matrices . . . . . . . . . . . . . . . . 311 9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 9.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 10 The Dual Space, Duality 319 10.1 The Dual Space E and Linear Forms . . . . . . . . . . . . . . . . . . . . . 319 (cid:3) 10.2 Pairing and Duality Between E and E . . . . . . . . . . . . . . . . . . . . 324 (cid:3) 10.3 The Duality Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 10.4 Hyperplanes and Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . 335 10.5 Transpose of a Linear Map and of a Matrix . . . . . . . . . . . . . . . . . . 337 10.6 The Four Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . 345 10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 11 Euclidean Spaces 351 11.1 Inner Products, Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . 351 11.2 Orthogonality and Duality in Euclidean Spaces . . . . . . . . . . . . . . . . 360 11.3 Adjoint of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 11.4 Existence and Construction of Orthonormal Bases . . . . . . . . . . . . . . 370 11.5 Linear Isometries (Orthogonal Transformations) . . . . . . . . . . . . . . . . 377 11.6 The Orthogonal Group, Orthogonal Matrices . . . . . . . . . . . . . . . . . 380 11.7 The Rodrigues Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 11.8 QR-Decomposition for Invertible Matrices . . . . . . . . . . . . . . . . . . . 385 11.9 Some Applications of Euclidean Geometry . . . . . . . . . . . . . . . . . . . 390 11.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 11.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 12 QR-Decomposition for Arbitrary Matrices 405 12.1 Orthogonal Re(cid:13)ections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 12.2 QR-Decomposition Using Householder Matrices . . . . . . . . . . . . . . . . 410 12.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 12.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 13 Hermitian Spaces 427 13.1 Hermitian Spaces, Pre-Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . 427 13.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 436 13.3 Linear Isometries (Also Called Unitary Transformations) . . . . . . . . . . . 441 13.4 The Unitary Group, Unitary Matrices . . . . . . . . . . . . . . . . . . . . . 443 13.5 Hermitian Re(cid:13)ections and QR-Decomposition . . . . . . . . . . . . . . . . . 446 13.6 Orthogonal Projections and Involutions . . . . . . . . . . . . . . . . . . . . 451 6 CONTENTS 13.7 Dual Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 13.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 13.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 14 Eigenvectors and Eigenvalues 467 14.1 Eigenvectors and Eigenvalues of a Linear Map . . . . . . . . . . . . . . . . . 467 14.2 Reduction to Upper Triangular Form . . . . . . . . . . . . . . . . . . . . . . 475 14.3 Location of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 14.4 Conditioning of Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . 482 14.5 Eigenvalues of the Matrix Exponential . . . . . . . . . . . . . . . . . . . . . 485 14.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 14.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488 15 Unit Quaternions and Rotations in SO(3) 499 H 15.1 The group SU(2) and the Skew Field of Quaternions . . . . . . . . . . . 499 15.2 Representation of Rotation in SO(3) By Quaternions in SU(2) . . . . . . . 501 15.3 Matrix Representation of the Rotation r . . . . . . . . . . . . . . . . . . . 506 q 15.4 An Algorithm to Find a Quaternion Representing a Rotation . . . . . . . . 508 15.5 The Exponential Map exp: su(2) SU(2) . . . . . . . . . . . . . . . . . . 511 ! ~ 15.6 Quaternion Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 15.7 Nonexistence of a \Nice" Section from SO(3) to SU(2) . . . . . . . . . . . . 515 15.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 15.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 16 Spectral Theorems 521 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 16.2 Normal Linear Maps: Eigenvalues and Eigenvectors . . . . . . . . . . . . . . 521 16.3 Spectral Theorem for Normal Linear Maps . . . . . . . . . . . . . . . . . . . 527 16.4 Self-Adjoint and Other Special Linear Maps . . . . . . . . . . . . . . . . . . 532 16.5 Normal and Other Special Matrices . . . . . . . . . . . . . . . . . . . . . . . 538 16.6 Rayleigh{Ritz Theorems and Eigenvalue Interlacing . . . . . . . . . . . . . 541 16.7 The Courant{Fischer Theorem; Perturbation Results . . . . . . . . . . . . . 546 16.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 16.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 17 Introduction to The Finite Elements Method 557 17.1 A One-Dimensional Problem: Bending of a Beam . . . . . . . . . . . . . . . 557 17.2 A Two-Dimensional Problem: An Elastic Membrane . . . . . . . . . . . . . 568 17.3 Time-Dependent Boundary Problems . . . . . . . . . . . . . . . . . . . . . . 571 18 Graphs and Graph Laplacians; Basic Facts 579 18.1 Directed Graphs, Undirected Graphs, Weighted Graphs . . . . . . . . . . . 582 18.2 Laplacian Matrices of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 589 CONTENTS 7 18.3 Normalized Laplacian Matrices of Graphs . . . . . . . . . . . . . . . . . . . 593 18.4 Graph Clustering Using Normalized Cuts . . . . . . . . . . . . . . . . . . . 597 18.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599 18.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 19 Spectral Graph Drawing 603 19.1 Graph Drawing and Energy Minimization . . . . . . . . . . . . . . . . . . . 603 19.2 Examples of Graph Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . 606 19.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610 20 Singular Value Decomposition and Polar Form 613 20.1 Properties of f f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613 (cid:3) (cid:14) 20.2 Singular Value Decomposition for Square Matrices . . . . . . . . . . . . . . 617 20.3 Polar Form for Square Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 620 20.4 Singular Value Decomposition for Rectangular Matrices . . . . . . . . . . . 623 20.5 Ky Fan Norms and Schatten Norms . . . . . . . . . . . . . . . . . . . . . . 626 20.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 20.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 21 Applications of SVD and Pseudo-Inverses 631 21.1 Least Squares Problems and the Pseudo-Inverse . . . . . . . . . . . . . . . . 631 21.2 Properties of the Pseudo-Inverse . . . . . . . . . . . . . . . . . . . . . . . . 638 21.3 Data Compression and SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 21.4 Principal Components Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . 645 21.5 Best A(cid:14)ne Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 656 21.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659 21.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660 22 Computing Eigenvalues and Eigenvectors 663 22.1 The Basic QR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 22.2 Hessenberg Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671 22.3 Making the QR Method More E(cid:14)cient Using Shifts . . . . . . . . . . . . . 677 22.4 Krylov Subspaces; Arnoldi Iteration . . . . . . . . . . . . . . . . . . . . . . 682 22.5 GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686 22.6 The Hermitian Case; Lanczos Iteration . . . . . . . . . . . . . . . . . . . . . 687 22.7 Power Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688 22.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690 22.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691 II A(cid:14)ne and Projective Geometry 693 23 Basics of A(cid:14)ne Geometry 695 8 CONTENTS 23.1 A(cid:14)ne Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 23.2 Examples of A(cid:14)ne Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704 23.3 Chasles’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 23.4 A(cid:14)ne Combinations, Barycenters . . . . . . . . . . . . . . . . . . . . . . . . 706 23.5 A(cid:14)ne Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711 23.6 A(cid:14)ne Independence and A(cid:14)ne Frames . . . . . . . . . . . . . . . . . . . . . 717 23.7 A(cid:14)ne Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723 23.8 A(cid:14)ne Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730 23.9 A(cid:14)ne Geometry: A Glimpse . . . . . . . . . . . . . . . . . . . . . . . . . . 732 23.10 A(cid:14)ne Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736 23.11 Intersection of A(cid:14)ne Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 738 24 Embedding an A(cid:14)ne Space in a Vector Space 741 24.1 The \Hat Construction," or Homogenizing . . . . . . . . . . . . . . . . . . . 741 ^ 24.2 A(cid:14)ne Frames of E and Bases of E . . . . . . . . . . . . . . . . . . . . . . . 748 ^ 24.3 Another Construction of E . . . . . . . . . . . . . . . . . . . . . . . . . . . 751 24.4 Extending A(cid:14)ne Maps to Linear Maps . . . . . . . . . . . . . . . . . . . . . 754 25 Basics of Projective Geometry 759 25.1 Why Projective Spaces? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759 25.2 Projective Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 25.3 Projective Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769 25.4 Projective Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772 25.5 Projective Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 25.6 Finding a Homography Between Two Projective Frames . . . . . . . . . . . 792 25.7 A(cid:14)ne Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805 25.8 Projective Completion of an A(cid:14)ne Space . . . . . . . . . . . . . . . . . . . 808 25.9 Making Good Use of Hyperplanes at In(cid:12)nity . . . . . . . . . . . . . . . . . 813 25.10 The Cross-Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816 25.11 Fixed Points of Homographies and Homologies . . . . . . . . . . . . . . . . 820 25.12 Duality in Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 834 25.13 Cross-Ratios of Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . 838 25.14 Complexi(cid:12)cation of a Real Projective Space . . . . . . . . . . . . . . . . . . 840 25.15 Similarity Structures on a Projective Space . . . . . . . . . . . . . . . . . . 842 25.16 Some Applications of Projective Geometry . . . . . . . . . . . . . . . . . . . 851 III The Geometry of Bilinear Forms 857 26 The Cartan{Dieudonn(cid:19)e Theorem 859 26.1 The Cartan{Dieudonn(cid:19)e Theorem for Linear Isometries . . . . . . . . . . . . 859 26.2 A(cid:14)ne Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 871 26.3 Fixed Points of A(cid:14)ne Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 873 CONTENTS 9 26.4 A(cid:14)ne Isometries and Fixed Points . . . . . . . . . . . . . . . . . . . . . . . 875 26.5 The Cartan{Dieudonn(cid:19)e Theorem for A(cid:14)ne Isometries . . . . . . . . . . . . 881 27 Isometries of Hermitian Spaces 885 27.1 The Cartan{Dieudonn(cid:19)e Theorem, Hermitian Case . . . . . . . . . . . . . . . 885 27.2 A(cid:14)ne Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 894 28 The Geometry of Bilinear Forms; Witt’s Theorem 899 28.1 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899 28.2 Sesquilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907 28.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911 28.4 Adjoint of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916 28.5 Isometries Associated with Sesquilinear Forms . . . . . . . . . . . . . . . . . 918 28.6 Totally Isotropic Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 922 28.7 Witt Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928 28.8 Symplectic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936 28.9 Orthogonal Groups and the Cartan{Dieudonn(cid:19)e Theorem . . . . . . . . . . . 940 28.10 Witt’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947 IV Algebra: PID’s, UFD’s, Noetherian Rings, Tensors, Modules over a PID, Normal Forms 953 29 Polynomials, Ideals and PID’s 955 29.1 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955 29.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956 29.3 Euclidean Division of Polynomials . . . . . . . . . . . . . . . . . . . . . . . 962 29.4 Ideals, PID’s, and Greatest Common Divisors . . . . . . . . . . . . . . . . . 964 29.5 Factorization and Irreducible Factors in K[X] . . . . . . . . . . . . . . . . . 972 29.6 Roots of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976 29.7 Polynomial Interpolation (Lagrange, Newton, Hermite) . . . . . . . . . . . . 983 30 Annihilating Polynomials; Primary Decomposition 991 30.1 Annihilating Polynomials and the Minimal Polynomial . . . . . . . . . . . . 993 30.2 Minimal Polynomials of Diagonalizable Linear Maps . . . . . . . . . . . . . 995 30.3 Commuting Families of Linear Maps . . . . . . . . . . . . . . . . . . . . . . 998 30.4 The Primary Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . 1001 30.5 Jordan Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007 30.6 Nilpotent Linear Maps and Jordan Form . . . . . . . . . . . . . . . . . . . . 1010 30.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 30.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017 31 UFD’s, Noetherian Rings, Hilbert’s Basis Theorem 1019 10 CONTENTS 31.1 Unique Factorization Domains (Factorial Rings) . . . . . . . . . . . . . . . . 1019 31.2 The Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . 1033 31.3 Noetherian Rings and Hilbert’s Basis Theorem . . . . . . . . . . . . . . . . 1039 31.4 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043 32 Tensor Algebras 1045 32.1 Linear Algebra Preliminaries: Dual Spaces and Pairings . . . . . . . . . . . 1047 32.2 Tensors Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052 32.3 Bases of Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 32.4 Some Useful Isomorphisms for Tensor Products . . . . . . . . . . . . . . . . 1065 32.5 Duality for Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069 32.6 Tensor Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075 32.7 Symmetric Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082 32.8 Bases of Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 32.9 Some Useful Isomorphisms for Symmetric Powers . . . . . . . . . . . . . . . 1089 32.10 Duality for Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . 1089 32.11 Symmetric Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093 32.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096 33 Exterior Tensor Powers and Exterior Algebras 1099 33.1 Exterior Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099 33.2 Bases of Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104 33.3 Some Useful Isomorphisms for Exterior Powers . . . . . . . . . . . . . . . . 1107 33.4 Duality for Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107 33.5 Exterior Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111 33.6 The Hodge -Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115 (cid:3) ~ 33.7 Left and Right Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119 ~ 33.8 Testing Decomposability . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129 ~ 33.9 The Grassmann-Plu(cid:127)cker’s Equations and Grassmannians . . . . . . . . . 1132 33.10 Vector-Valued Alternating Forms . . . . . . . . . . . . . . . . . . . . . . . . 1135 33.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139 34 Introduction to Modules; Modules over a PID 1141 34.1 Modules over a Commutative Ring . . . . . . . . . . . . . . . . . . . . . . . 1141 34.2 Finite Presentations of Modules . . . . . . . . . . . . . . . . . . . . . . . . . 1150 34.3 Tensor Products of Modules over a Commutative Ring . . . . . . . . . . . . 1156 34.4 Torsion Modules over a PID; Primary Decomposition . . . . . . . . . . . . . 1159 34.5 Finitely Generated Modules over a PID . . . . . . . . . . . . . . . . . . . . 1165 34.6 Extension of the Ring of Scalars . . . . . . . . . . . . . . . . . . . . . . . . 1181 35 Normal Forms; The Rational Canonical Form 1187 35.1 The Torsion Module Associated With An Endomorphism . . . . . . . . . . 1187 35.2 The Rational Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . 1195

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.