ebook img

Algebra, topology, differential calculus, and optimization theory PDF

1962 Pages·2019·9.963 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebra, topology, differential calculus, and optimization theory

Algebra, Topology, Di(cid:11)erential Calculus, and Optimization Theory For Computer Science and Machine Learning Jean Gallier and Jocelyn Quaintance Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] c Jean Gallier (cid:13) August 2, 2019 2 Contents Contents 3 1 Introduction 17 2 Groups, Rings, and Fields 19 2.1 Groups, Subgroups, Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Cyclic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3 Rings and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 I Linear Algebra 43 3 Vector Spaces, Bases, Linear Maps 45 3.1 Motivations: Linear Combinations, Linear Independence, Rank . . . . . . . 45 3.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 P 3.3 Indexed Families; the Sum Notation a . . . . . . . . . . . . . . . . . . 60 i I i 3.4 Linear Independence, Subspaces . . . .2 . . . . . . . . . . . . . . . . . . . . 66 3.5 Bases of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.7 Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.8 Quotient Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.9 Linear Forms and the Dual Space . . . . . . . . . . . . . . . . . . . . . . . . 94 3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4 Matrices and Linear Maps 107 4.1 Representation of Linear Maps by Matrices . . . . . . . . . . . . . . . . . . 107 4.2 Composition of Linear Maps and Matrix Multiplication . . . . . . . . . . . 112 4.3 Change of Basis Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4 The E(cid:11)ect of a Change of Bases on Matrices . . . . . . . . . . . . . . . . . 120 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5 Haar Bases, Haar Wavelets, Hadamard Matrices 131 3 4 CONTENTS 5.1 Introduction to Signal Compression Using Haar Wavelets . . . . . . . . . . 131 5.2 Haar Matrices, Scaling Properties of Haar Wavelets . . . . . . . . . . . . . . 133 5.3 Kronecker Product Construction of Haar Matrices . . . . . . . . . . . . . . 138 5.4 Multiresolution Signal Analysis with Haar Bases . . . . . . . . . . . . . . . 140 5.5 Haar Transform for Digital Images . . . . . . . . . . . . . . . . . . . . . . . 142 5.6 Hadamard Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6 Direct Sums 155 6.1 Sums, Direct Sums, Direct Products . . . . . . . . . . . . . . . . . . . . . . 155 6.2 The Rank-Nullity Theorem; Grassmann’s Relation . . . . . . . . . . . . . . 165 6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 7 Determinants 181 7.1 Permutations, Signature of a Permutation . . . . . . . . . . . . . . . . . . . 181 7.2 Alternating Multilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.3 De(cid:12)nition of a Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.4 Inverse Matrices and Determinants . . . . . . . . . . . . . . . . . . . . . . . 197 7.5 Systems of Linear Equations and Determinants . . . . . . . . . . . . . . . . 200 7.6 Determinant of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . 203 7.7 The Cayley{Hamilton Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 203 7.8 Permanents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7.10 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 7.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 8 Gaussian Elimination, LU, Cholesky, Echelon Form 219 8.1 Motivating Example: Curve Interpolation . . . . . . . . . . . . . . . . . . . 219 8.2 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8.3 Elementary Matrices and Row Operations . . . . . . . . . . . . . . . . . . . 228 8.4 LU-Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 8.5 PA = LU Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 ~ 8.6 Proof of Theorem 8.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 8.7 Dealing with Roundo(cid:11) Errors; Pivoting Strategies . . . . . . . . . . . . . . . 251 8.8 Gaussian Elimination of Tridiagonal Matrices . . . . . . . . . . . . . . . . . 252 8.9 SPD Matrices and the Cholesky Decomposition . . . . . . . . . . . . . . . . 254 8.10 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 8.11 RREF, Free Variables, Homogeneous Systems . . . . . . . . . . . . . . . . . 269 8.12 Uniqueness of RREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 8.13 Solving Linear Systems Using RREF . . . . . . . . . . . . . . . . . . . . . . 274 8.14 Elementary Matrices and Columns Operations . . . . . . . . . . . . . . . . 281 CONTENTS 5 ~ 8.15 Transvections and Dilatations . . . . . . . . . . . . . . . . . . . . . . . . 282 8.16 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 8.17 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 9 Vector Norms and Matrix Norms 301 9.1 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 9.2 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 9.3 Subordinate Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 9.4 Inequalities Involving Subordinate Norms . . . . . . . . . . . . . . . . . . . 324 9.5 Condition Numbers of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 326 9.6 An Application of Norms: Inconsistent Linear Systems . . . . . . . . . . . . 335 9.7 Limits of Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . 336 9.8 The Matrix Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 9.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 9.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 10 Iterative Methods for Solving Linear Systems 351 10.1 Convergence of Sequences of Vectors and Matrices . . . . . . . . . . . . . . 351 10.2 Convergence of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . 354 10.3 Methods of Jacobi, Gauss{Seidel, and Relaxation . . . . . . . . . . . . . . . 356 10.4 Convergence of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 10.5 Convergence Methods for Tridiagonal Matrices . . . . . . . . . . . . . . . . 367 10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 10.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 11 The Dual Space and Duality 375 11.1 The Dual Space E and Linear Forms . . . . . . . . . . . . . . . . . . . . . 375 (cid:3) 11.2 Pairing and Duality Between E and E . . . . . . . . . . . . . . . . . . . . 382 (cid:3) 11.3 The Duality Theorem and Some Consequences . . . . . . . . . . . . . . . . 387 11.4 The Bidual and Canonical Pairings . . . . . . . . . . . . . . . . . . . . . . . 393 11.5 Hyperplanes and Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . 395 11.6 Transpose of a Linear Map and of a Matrix . . . . . . . . . . . . . . . . . . 396 11.7 Properties of the Double Transpose . . . . . . . . . . . . . . . . . . . . . . . 403 11.8 The Four Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . 405 11.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 11.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 12 Euclidean Spaces 413 12.1 Inner Products, Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . 413 12.2 Orthogonality and Duality in Euclidean Spaces . . . . . . . . . . . . . . . . 422 12.3 Adjoint of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 12.4 Existence and Construction of Orthonormal Bases . . . . . . . . . . . . . . 432 12.5 Linear Isometries (Orthogonal Transformations) . . . . . . . . . . . . . . . . 439 6 CONTENTS 12.6 The Orthogonal Group, Orthogonal Matrices . . . . . . . . . . . . . . . . . 442 12.7 The Rodrigues Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 12.8 QR-Decomposition for Invertible Matrices . . . . . . . . . . . . . . . . . . . 447 12.9 Some Applications of Euclidean Geometry . . . . . . . . . . . . . . . . . . . 452 12.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 12.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 13 QR-Decomposition for Arbitrary Matrices 467 13.1 Orthogonal Re(cid:13)ections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 13.2 QR-Decomposition Using Householder Matrices . . . . . . . . . . . . . . . . 472 13.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 13.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 14 Hermitian Spaces 489 14.1 Hermitian Spaces, Pre-Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . 489 14.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 498 14.3 Linear Isometries (Also Called Unitary Transformations) . . . . . . . . . . . 503 14.4 The Unitary Group, Unitary Matrices . . . . . . . . . . . . . . . . . . . . . 505 14.5 Hermitian Re(cid:13)ections and QR-Decomposition . . . . . . . . . . . . . . . . . 508 14.6 Orthogonal Projections and Involutions . . . . . . . . . . . . . . . . . . . . 513 14.7 Dual Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 14.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523 14.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 15 Eigenvectors and Eigenvalues 529 15.1 Eigenvectors and Eigenvalues of a Linear Map . . . . . . . . . . . . . . . . . 529 15.2 Reduction to Upper Triangular Form . . . . . . . . . . . . . . . . . . . . . . 537 15.3 Location of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 15.4 Conditioning of Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . 544 15.5 Eigenvalues of the Matrix Exponential . . . . . . . . . . . . . . . . . . . . . 547 15.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 15.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 16 Unit Quaternions and Rotations in SO(3) 561 H 16.1 The Group SU(2) and the Skew Field of Quaternions . . . . . . . . . . . 561 16.2 Representation of Rotation in SO(3) By Quaternions in SU(2) . . . . . . . 563 16.3 Matrix Representation of the Rotation r . . . . . . . . . . . . . . . . . . . 568 q 16.4 An Algorithm to Find a Quaternion Representing a Rotation . . . . . . . . 570 16.5 The Exponential Map exp: su(2) SU(2) . . . . . . . . . . . . . . . . . . 573 ! ~ 16.6 Quaternion Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 575 16.7 Nonexistence of a \Nice" Section from SO(3) to SU(2) . . . . . . . . . . . . 577 16.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 16.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580 CONTENTS 7 17 Spectral Theorems 583 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583 17.2 Normal Linear Maps: Eigenvalues and Eigenvectors . . . . . . . . . . . . . . 583 17.3 Spectral Theorem for Normal Linear Maps . . . . . . . . . . . . . . . . . . . 589 17.4 Self-Adjoint and Other Special Linear Maps . . . . . . . . . . . . . . . . . . 594 17.5 Normal and Other Special Matrices . . . . . . . . . . . . . . . . . . . . . . . 600 17.6 Rayleigh{Ritz Theorems and Eigenvalue Interlacing . . . . . . . . . . . . . 603 17.7 The Courant{Fischer Theorem; Perturbation Results . . . . . . . . . . . . . 608 17.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 17.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612 18 Computing Eigenvalues and Eigenvectors 619 18.1 The Basic QR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 18.2 Hessenberg Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 18.3 Making the QR Method More E(cid:14)cient Using Shifts . . . . . . . . . . . . . 633 18.4 Krylov Subspaces; Arnoldi Iteration . . . . . . . . . . . . . . . . . . . . . . 638 18.5 GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 18.6 The Hermitian Case; Lanczos Iteration . . . . . . . . . . . . . . . . . . . . . 643 18.7 Power Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644 18.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 18.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 19 Introduction to The Finite Elements Method 649 19.1 A One-Dimensional Problem: Bending of a Beam . . . . . . . . . . . . . . . 649 19.2 A Two-Dimensional Problem: An Elastic Membrane . . . . . . . . . . . . . 660 19.3 Time-Dependent Boundary Problems . . . . . . . . . . . . . . . . . . . . . . 663 20 Graphs and Graph Laplacians; Basic Facts 671 20.1 Directed Graphs, Undirected Graphs, Weighted Graphs . . . . . . . . . . . 674 20.2 Laplacian Matrices of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 681 20.3 Normalized Laplacian Matrices of Graphs . . . . . . . . . . . . . . . . . . . 685 20.4 Graph Clustering Using Normalized Cuts . . . . . . . . . . . . . . . . . . . 689 20.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691 20.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 21 Spectral Graph Drawing 695 21.1 Graph Drawing and Energy Minimization . . . . . . . . . . . . . . . . . . . 695 21.2 Examples of Graph Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . 698 21.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702 22 Singular Value Decomposition and Polar Form 705 22.1 Properties of f f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 (cid:3) (cid:14) 22.2 Singular Value Decomposition for Square Matrices . . . . . . . . . . . . . . 709 8 CONTENTS 22.3 Polar Form for Square Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 712 22.4 Singular Value Decomposition for Rectangular Matrices . . . . . . . . . . . 715 22.5 Ky Fan Norms and Schatten Norms . . . . . . . . . . . . . . . . . . . . . . 718 22.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719 22.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719 23 Applications of SVD and Pseudo-Inverses 723 23.1 Least Squares Problems and the Pseudo-Inverse . . . . . . . . . . . . . . . . 723 23.2 Properties of the Pseudo-Inverse . . . . . . . . . . . . . . . . . . . . . . . . 730 23.3 Data Compression and SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . 735 23.4 Principal Components Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . 737 23.5 Best A(cid:14)ne Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 748 23.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752 23.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753 II A(cid:14)ne and Projective Geometry 757 24 Basics of A(cid:14)ne Geometry 759 24.1 A(cid:14)ne Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759 24.2 Examples of A(cid:14)ne Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768 24.3 Chasles’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769 24.4 A(cid:14)ne Combinations, Barycenters . . . . . . . . . . . . . . . . . . . . . . . . 770 24.5 A(cid:14)ne Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775 24.6 A(cid:14)ne Independence and A(cid:14)ne Frames . . . . . . . . . . . . . . . . . . . . . 781 24.7 A(cid:14)ne Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787 24.8 A(cid:14)ne Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794 24.9 A(cid:14)ne Geometry: A Glimpse . . . . . . . . . . . . . . . . . . . . . . . . . . 796 24.10 A(cid:14)ne Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800 24.11 Intersection of A(cid:14)ne Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 802 25 Embedding an A(cid:14)ne Space in a Vector Space 805 25.1 The \Hat Construction," or Homogenizing . . . . . . . . . . . . . . . . . . . 805 ^ 25.2 A(cid:14)ne Frames of E and Bases of E . . . . . . . . . . . . . . . . . . . . . . . 812 ^ 25.3 Another Construction of E . . . . . . . . . . . . . . . . . . . . . . . . . . . 815 25.4 Extending A(cid:14)ne Maps to Linear Maps . . . . . . . . . . . . . . . . . . . . . 818 26 Basics of Projective Geometry 823 26.1 Why Projective Spaces? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823 26.2 Projective Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828 26.3 Projective Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833 26.4 Projective Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836 26.5 Projective Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 CONTENTS 9 26.6 Finding a Homography Between Two Projective Frames . . . . . . . . . . . 856 26.7 A(cid:14)ne Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869 26.8 Projective Completion of an A(cid:14)ne Space . . . . . . . . . . . . . . . . . . . 872 26.9 Making Good Use of Hyperplanes at In(cid:12)nity . . . . . . . . . . . . . . . . . 877 26.10 The Cross-Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880 26.11 Fixed Points of Homographies and Homologies . . . . . . . . . . . . . . . . 884 26.12 Duality in Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 898 26.13 Cross-Ratios of Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . 902 26.14 Complexi(cid:12)cation of a Real Projective Space . . . . . . . . . . . . . . . . . . 904 26.15 Similarity Structures on a Projective Space . . . . . . . . . . . . . . . . . . 906 26.16 Some Applications of Projective Geometry . . . . . . . . . . . . . . . . . . . 915 III The Geometry of Bilinear Forms 921 27 The Cartan{Dieudonn(cid:19)e Theorem 923 27.1 The Cartan{Dieudonn(cid:19)e Theorem for Linear Isometries . . . . . . . . . . . . 923 27.2 A(cid:14)ne Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 935 27.3 Fixed Points of A(cid:14)ne Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 937 27.4 A(cid:14)ne Isometries and Fixed Points . . . . . . . . . . . . . . . . . . . . . . . 939 27.5 The Cartan{Dieudonn(cid:19)e Theorem for A(cid:14)ne Isometries . . . . . . . . . . . . 945 28 Isometries of Hermitian Spaces 949 28.1 The Cartan{Dieudonn(cid:19)e Theorem, Hermitian Case . . . . . . . . . . . . . . . 949 28.2 A(cid:14)ne Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 958 29 The Geometry of Bilinear Forms; Witt’s Theorem 963 29.1 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963 29.2 Sesquilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971 29.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 29.4 Adjoint of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980 29.5 Isometries Associated with Sesquilinear Forms . . . . . . . . . . . . . . . . . 982 29.6 Totally Isotropic Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 986 29.7 Witt Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992 29.8 Symplectic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 29.9 Orthogonal Groups and the Cartan{Dieudonn(cid:19)e Theorem . . . . . . . . . . . 1004 29.10 Witt’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011 IV Algebra: PID’s, UFD’s, Noetherian Rings, Tensors, Modules over a PID, Normal Forms 1017 30 Polynomials, Ideals and PID’s 1019 10 CONTENTS 30.1 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 30.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 30.3 Euclidean Division of Polynomials . . . . . . . . . . . . . . . . . . . . . . . 1026 30.4 Ideals, PID’s, and Greatest Common Divisors . . . . . . . . . . . . . . . . . 1028 30.5 Factorization and Irreducible Factors in K[X] . . . . . . . . . . . . . . . . . 1036 30.6 Roots of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040 30.7 Polynomial Interpolation (Lagrange, Newton, Hermite) . . . . . . . . . . . . 1047 31 Annihilating Polynomials; Primary Decomposition 1055 31.1 Annihilating Polynomials and the Minimal Polynomial . . . . . . . . . . . . 1057 31.2 Minimal Polynomials of Diagonalizable Linear Maps . . . . . . . . . . . . . 1059 31.3 Commuting Families of Linear Maps . . . . . . . . . . . . . . . . . . . . . . 1062 31.4 The Primary Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . 1065 31.5 Jordan Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071 31.6 Nilpotent Linear Maps and Jordan Form . . . . . . . . . . . . . . . . . . . . 1074 31.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080 31.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081 32 UFD’s, Noetherian Rings, Hilbert’s Basis Theorem 1085 32.1 Unique Factorization Domains (Factorial Rings) . . . . . . . . . . . . . . . . 1085 32.2 The Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . 1099 32.3 Noetherian Rings and Hilbert’s Basis Theorem . . . . . . . . . . . . . . . . 1105 32.4 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109 33 Tensor Algebras 1111 33.1 Linear Algebra Preliminaries: Dual Spaces and Pairings . . . . . . . . . . . 1113 33.2 Tensors Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118 33.3 Bases of Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130 33.4 Some Useful Isomorphisms for Tensor Products . . . . . . . . . . . . . . . . 1131 33.5 Duality for Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135 33.6 Tensor Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1141 33.7 Symmetric Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148 33.8 Bases of Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152 33.9 Some Useful Isomorphisms for Symmetric Powers . . . . . . . . . . . . . . . 1155 33.10 Duality for Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . 1155 33.11 Symmetric Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159 33.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162 34 Exterior Tensor Powers and Exterior Algebras 1165 34.1 Exterior Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165 34.2 Bases of Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1170 34.3 Some Useful Isomorphisms for Exterior Powers . . . . . . . . . . . . . . . . 1173 34.4 Duality for Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.