ebook img

Alain Connes PDF

56 Pages·2017·1.69 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Alain Connes

The Riemann-Roch strategy A. Connes (Collaboration with C. Consani) 1 RH equivalent RH problem is equivalent to an inequality for real valued functions f on R∗ of the form + (cid:90) (cid:90) ∗ RH ⇐⇒ s(f, f) ≤ 0 , ∀f | f(u)d u = f(u)du = 0. −1 −1 s(f, g) := N(f (cid:63) ˜g), ˜g(u) := u g(u ) (cid:63) = convolution product on R∗ + ∞ 2 (cid:90) ∞ u h(u) − h(1) (cid:88) ∗ N(h) := Λ(n)h(n) + d u + c h(1) 1 u2 − 1 n=1 1 c = (log π + γ). 2 2 Explicit Formula F : [1, ∞) → R continuous and continuously differen- tiable except for finitely many points at which both (cid:48) F(u) and F (u) have at most a discontinuity of the first −1/2−(cid:15) kind, and s.t. for some (cid:15) > 0 : F(u) = O(u ) (cid:90) ∞ s−1 Φ(s) = F(u) u du 1 ∞ 1 1 1 (cid:88) (cid:88) (cid:88) −m/2 m Φ( )+Φ(− )− Φ(ρ− ) = log p p F(p )+ 2 2 2 ρ∈Zeros p m=1 3/2 γ log π (cid:90) ∞ t F(t) − F(1) +( + )F(1) + dt 2 2 1 t(t2 − 1) 3 Weil’s formulation h ∈ S(C ) a Schwartz function with compact support : K −1 (cid:90) (cid:48) h(u ) ˆ ˆ (cid:88) (cid:88)ˆ (cid:88) ∗ h(0) + h(1) − h(χ˜, ρ) = d u K∗ |1 − u| Z v v χ∈C(cid:100)K,1 χ˜ (cid:82) (cid:48) where the principal value is normalized by the addi- K∗ v tive character α and for any character ω of C v K (cid:90) ˆ z ∗ ˆ ˆ h(ω, z) := h(u) ω(u) |u| d u, h(t) := h(1, t) 4 The adele class space and the explicit formulas Let K be a global field, the adele class space of K is the quotient X = A /K× of the adeles of K by the action K K of K× by multiplication. (cid:90) Tξ(x) := ξ(ux) = k(x, y)ξ(y)dy k(x, y) = δ(ux − y), (cid:90) (cid:90) Tr (T) := k(x, x)dx = δ(ux − x)dx distr 1 (cid:90) 1 = δ(z)dz = |u − 1| |u − 1| 5 ���������� �������� �������� �������� ���������� �������� 6 Critical zeros as absorption spectrum The spectral side now involves all non-trivial zeros and the geometric side is given by : (cid:18)(cid:90) (cid:19) (cid:90) h(w−1) ∗ (cid:88) ∗ Tr h(w)ϑ(w)d w = d w distr K× |1 − w| v v (A. Connes, Selecta 1998, R. Meyer, Duke, 2005) 7 The limit q → 1 and the Hasse-Weil formula C. Soul´e : ζ (s) := lim Z(X, q−s)(q − 1)N(1), s ∈ R X q→1 −s −s where Z(X, q ) denotes the evaluation at T = q of the Hasse-Weil exponential series   r T (cid:88) r Z(X, T) := exp N(q )   r r≥1 For the projective space Pn : N(q) = 1 + q + . . . + qn 1 n+1 ζ (s) = lim (q − 1) ζ (s) = Pn(F1) q→1 Pn(Fq) (cid:81)n(s − k) 0 8 The limit q → 1 The Riemann sums of an integral appear from the right hand side : ∂ ζ (s) (cid:90) ∞ s N −s ∗ = − N(u) u d u ζ (s) 1 N Thus the integral equation produces a precise equation for the counting function N (q) = N(q) associated to C the hypothetical curve C : ∂ ζ (s) (cid:90) ∞ s Q −s ∗ = − N(u) u d u ζQ(s) 1 9 The distribution N (u) This equation admits a solution which is a distribution (cid:80) and is given with ϕ(u) := n Λ(n), by the equality n<u d N(u) = ϕ(u) + κ(u) du where κ(u) is the distribution which appears in the ex- plicit formula 2 (cid:90) ∞ (cid:90) ∞ u f(u) − f(1) 1 ∗ ∗ κ(u)f(u)d u = d u+cf(1) , c = (log π+γ) 1 1 u2 − 1 2 The conclusion is that the distribution N(u) is positive on (1, ∞) and is given by   ρ+1 d u (cid:88) N(u) = u − order(ρ) + 1   du ρ + 1 ρ∈Z 10

Description:
the geometric side is given by : Tr distr. (∫ h(w)ϑ(w)d. ∗ w. ) = ∑ v. ∫. K. × v h(w. −1. ) |1 − w| d. ∗ w. (A. Connes, Selecta 1998, R. Meyer, Duke, 2005).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.