ebook img

Aharonov-Bohm effect in the non-Abelian quantum Hall fluid PDF

0.25 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Aharonov-Bohm effect in the non-Abelian quantum Hall fluid

Aharonov–Bohm effect inthenon-Abelian quantum Hallfluid Lachezar S. Georgiev1 and Michael R. Geller2 1InstituteforNuclearResearchandNuclearEnergy, 72TsarigradskoChaussee, 1784Sofia, Bulgaria 2Department of Physicsand Astronomy, University of Georgia, Athens, Georgia 30602-2451 (Dated:November8,2005) 6 0 The ν = 5/2 fractional quantum Hall effect state has attracted great interest recently, both as an arena 0 toexplorethephysicsof non-Abelianquasiparticleexcitations, and asapossiblearchitecturefortopological 2 quantuminformationprocessing.HereweusetheconformalfieldtheoreticdescriptionoftheMoore–Readstate toprovidecleartunnelingsignaturesofthisstateinanAharonov–Bohmgeometry. Whilenotprobingstatistics n directly, the measurements proposed here would provide a first, experimentally tractable step towards a full a J characterizationofthe5/2state. 7 PACSnumbers:71.10.Pm,73.43.–f,03.67.Lx 2 ] ThequantumHallfluidhasbecomeaparadigmofstrongly ThemostspectacularpredictionofMooreandReadisthat l l a correlated quantum systems [1, 2]. A combination of two- thequasiparticleexcitationsofthe5/2statearenon-Abelian: h dimensional confinement and strong magnetic field leads to An excited state of 2n quasiholeshas degeneracy2n 1, and − - rich phenomena driven by electron-electron interaction and the braiding of their worldlines generates elements from the s e disorder.Assuch,theuseoftraditionaltheoreticaltechniques orthogonalgroupSO(2n)actingonthedegeneratemultiplet. m such as many-bodyperturbationtheory has had only limited This property follows from the correlation function (3), and . success, and, in an approachpioneered in 1983 by Laughlin alsofromanalternativepictureofthestate(1)asaBCScon- t a [3], some of the most important advances have been made densate of l = 1 pairs of composite fermions [16], which m − by correctly guessing the many-particlewave function. The supportsexoticnon-Abelianvortexexcitations[17,18]. - statesdescribedbyLaughlin,andtheirgeneralizations[1,2], d In addition to its intrinsic interest as a system to explore haveHallconductancesσ given(inunitsofe2/h)byfrac- n xy non-Abelianquantummechanics,DasSarmaetal. [19]have o tions with odd denominatorsonly. The charged excitations, proposed to use a pair of antidots at ν = 5/2 to construct c which have fractional charge [4, 5, 6] and statistics [7], are a topological quantum NOT gate, building on an intriguing [ abelian anyons. In 1987, however, evidence for an even- idea by Kitaev to use the transformationsgenerated by non- 2 denominatorquantizedHallstateatν = 5/2wasdiscovered Abelian anyon braiding for fault-tolerantquantum computa- v inthefirstexcitedLandaulevel[8],andthestateisnowrou- tion [20]. Unfortunately, the braiding matrices generated by 6 tinelyobservedinultrahigh-mobilitysystems[9,10,11].Mo- (3)arenotcomputationallyuniversal.Butbygeneralizingthe 3 tivatedinpartbythissurprisingresult,MooreandRead(MR) 2 pairing present in ΨMR to clusters of k > 2 particles, Read introducedtheground-statetrialwavefunction[12] 1 andRezayi[21]haveproposedahierarchyofgroundandex- 1 citedstates—CFT correlatorsofparafermioncurrentsreduc- 1 5 ΨMR(z1,z2,...,zN)=Pf (zi zj)2 (1) ingto(2)and(3)whenk = 2. Theseparafermionstatesare 0 (cid:18)zi−zj(cid:19)i<j − alreadycomputationallyuniversalatk =3. / Y t a for N (even) electrons in a partially occupied Landau level Computation with non-Abelian quasiparticles will be in- m withcomplexcoordinatesz ,wherethefirsttermisthePfaf- credibly challengingexperimentally. Demonstratingthat the i - fian and the standard Gaussian factor is suppressed. Exact actual 5/2 state is in the universality class of (1), and that d diagonalizationstudies[13,14]indicatethattheexactground thequasiparticlesareindeednon-Abelian,arenecessaryfirst n o stateatν =5/2iscloseto(1). steps. Direct interferometric and thermodynamic probes c MooreandReadalsoconstructedexcited-statewavefunc- of the non-Abelian statistics have been proposed recently : tions. By identifying(1) with a two-dimensionalchiralcon- [22, 23]. Here we propose an even simpler test of the MR v i formalfieldtheory(CFT)correlationfunction state, in a similar antidot geometry. Although the tunnel- X ingmeasurementproposedbelowdoesnotdirectlyprobethe r ΨMR(z1,z2,...,zN)= ψ(z1)ψ(z2) ψ(zN) (2) non-Abelian nature of the excitations, it can distinguish be- a h ··· i tweenthetunnelingofordinaryelectronsandthatofabosonic ofcharge1fermionfieldsψ :ei√2φ:ψ ,whereφisau(1) ≡ M charge1excitationwecallκ,whichisallowedbytheCFTand boson[15]andψ aneutralMajoranafermion,MRproposed M whichhaslowerscalingdimension.Andtheexistenceoftwo CFT-basedexcitedstatesoftheform inequivalentcharge1 excitationsis itself a fingerprintof the ψqh(η1) ψqh(η2n)ψ(z1) ψ(zN) . (3) non-Abeliannatureofthefundamentalquasiholeψqh. Exper- h ··· ··· i imentalobservationoftheelectronandκtunnelingchannels Hereψ :e(i/√8)φ:σ isthefundamentalcharge1/4quasi- wouldgiveconfidenceintheMRstate,thepowerfulCFTap- qh ≡ holefieldoftheCFT,withσthechiralspinfieldofthecritical proach, and, by extension, the k > 2 parafermionhierarchy Isingmodel. necessaryforuniversaltopologicalquantumcomputation. 2 needtoconsider.Weemphasizethatκisanallowedexcitation of the Pfaffian state satisfying the parity rule [29, 30]. The x I 1 I scalingdimensionofκis1,andifittunnelsitwilldominate L R electrontunnelinginthelow-temperaturelimit,leavingaclear (cid:80)L (cid:81)(cid:32)5/2 (cid:77) (cid:81)(cid:32)5/2 (cid:80)R experimentalsignature. Weturnnowtoacalculationofthesource-draincurrent x µ 2 I(V,T,ϕ)=I (V,T)+I (V,T) cos +ϕ 0 AB ∆ǫ (cid:16) (cid:17) asafunctionofvoltageV andtemperatureT,whichaccord- ingtoouranalysiscanbedecomposedintoflux-independent FIG.1:(coloronline).Antidotinsideaν =5/2Hallbarwithweak and period-one oscillatory Aharonov–Bohm (AB) compo- tunnelingpointsatx1andx2,threadedbyanABfluxϕ. nents. Here µ is the mean electrochemical potential of the contacts,∆ǫ 2πv/Listhenoninteractinglevelspacingon ≡ theantidotwithedgevelocityv andcircumferenceL, andϕ The geometry we consider is illustrated in Fig. 1. The istheABfluxinunitsofh/e. ν = 1/3realizationofthissystemwasconsideredbyoneof TheHamiltonianinthestrong-antidot-couplingregimeis uspreviously[24],andadualconfiguration,thedoublepoint- contactinterferometer,wasstudiedpreviouslybyChamonet al. [25]. In the strong-antidot-couplingregime pictured, the H =HL+HR+δH, with δH = ΓiBi+Γ∗iBi† . edgestates,indicatedbythearrows,arestronglyreflectedby iX=1,2(cid:16) (cid:17) (5) theantidot.Thisregimecanberealizedexperimentallyintwo The Hamiltonians for the uncoupled right- and left-moving physically distinct ways: (i) The Hall fluid can be pinched edgestatesoflengthL sys offnearthe x , leaving largetunnelingbarriersor “vacuum” i regions. Onlyelectronscantunnelthroughthesevacuumre- H = 2πv L c and H = 2πv L¯ c R 0 L 0 gions.(ii)Thesystemcanbeginintheweak-antidot-coupling Lsys − 24 Lsys − 24 (cid:16) (cid:17) (cid:16) (cid:17) regime, where current from the upper edge tunnels through are given by the zero modes of the CFT stress tensors T(z) the antidot (acting as a macroscopic impurity) to the lower andT¯(z¯), one,andthetemperatureisthenlowered.Theweaktunneling regime, which permits quasiparticletunneling, is unstable at dz dz¯ L zT(z) and L¯ z¯T¯(z¯) low temperatures, as in the ν = 1/3 quantum point contact 0 ≡ 2πi 0 ≡ 2πi I I [26], and the system then flows to the stable strong-antidot- whichsatisfytheVirasoroalgebrawithcentralchargec=3/2 coupling fixed point, which can be described by an effective [29,30,31]. Then weak-tunnelingtheory[27]. Intheν = 1/3case, thiseffec- tive theory contains electron tunneling only, and is identical 1 ∞ ∞ tcoomtheastofrfocmastehe(i)e.xTachteBmeothsetdAranmsaatzticsoillluutsiotrnattihoenochfitrhailsLfauct-t L0 = 2J02+n=1J−nJn+n=1(n− 21)ψ−Mn+21ψnM−21, X X tinger liquid model for a ν = 1/3 point contact containing and similarly for L¯ . The Laurent mode expansion of the 0 only charge 1/3 quasiparticles, which nonetheless describes Majorana field with antiperiodicboundaryconditionson the electron-liketunnelingfaroffresonance[28]. cylinder(z =e2πix/Lsys)is In principle, the effective weak-tunneling theory for case dz (ii)canbedifferentthanthatof(i),andwewillconsiderthis ψ (z)= ψM z n with ψM = zn 1ψ (z). possibilityhere. Because thereis noexactsolutionavailable M n Z n−12 − n−21 I 2πi − M fortheν = 5/2quasiparticletunnelingmodel,wewillguess X∈ the form of the effective theory. Guided by the reasonable Theu(1)currentJ(z) i∂zφhasmodeexpansion ≡ condition that any charge 1 excitation of the CFT preserv- dz ing the stability of the fixed pointcan potentially tunnel(the J(z)= Jnz−n−1, with Jn = znJ(z). 2πi charge requirement introduced to recover the ν = 1/3 re- n Z I X∈ sult),weneedtoconsideraclusterofatleastfourfundamental HereJ /√2andJ¯/√2aretheusualg = 1/2Luttingerliq- 0 0 quasiholesψ . Accordingtothefusionruleσ σ =1+ψ qh × M uidnumbercurrentsNRandNL. Theoperators [29,30],theproductψ ψ ψ ψ =ψ+κyieldstwo qh qh qh qh × × × distincttunnelingobjects,theelectron/holeψ,andacharge1 Bi ≡ψL(xi)ψR†(xi), i=1,2, boson enteringEq.(5)aretunnelingoperatorsactingatpointsx in i κ :ei√2φ: (4) Fig. 1. The fields ψ and ψ appearingin B dependon the L R ≡ tunnelingobject. Thetunnelingamplitudesatx andx are 1 2 whosequantumnumbersaresummarizedinTableI.Thereare alsoexcitationslessrelevantthantheelectronthatwedonot Γ =Γeiπ(µ/∆ǫ+ϕ) and Γ =Γe iπ(µ/∆ǫ+ϕ), 1 2 − 3 istakenwithrespecttotheHamiltonian TABLE I: Some chiral conformal fields and their quantum num- bers. ∆c and ∆0 are the scaling dimensions in the charged and neutral sectors, ∆ ≡ ∆c + ∆0 is the total CFT dimension, and H H +H µ N µ N . θ≡2π∆(mod2π)isthestatisticsangle. 0 ≡ R L− R R− L L field charge ∆c ∆0 ∆ θ/π The finite-temperature correlation function X (t) is com- quasiholeψqh 14 116 116 81 14 putedinthreesteps: (i)First,itissplitintoprodiujctsoffinite- κparticle 1 1 0 1 0 temperature correlation functions (with chirality ) of the Majoranaψ 0 0 1 1 1 ± electronψM 1 1 122 223 1 fthoermrmhaψlc±†o(rxre,lta)tψio±n(fxu′n,ct′t)ioiβn;s(airie)oTbhteanintehdeaseszoenreo--dteimmepnesraiotunrael correlation functions (after Wick rotation to imaginary time τ)onacylinderwithcircumferenceL v/(k T);(iii)Fi- T B where, with no loss of generality, Γ can be taken to be real. nally,wemapthecylindertothecomplex≡planebytheconfor- ThebareamplitudeΓdependsonmicroscopicdetailsandtype mal transformationz = e2π(ivτ±x)/LT where, for primary oftunnelingobject. fieldswithscalingdim±ension∆, ThetunnelingcurrentI(V,T,ϕ)canbecalculatedbylinear responsetheoryalongthelinesofRefs.[24]and[25],leading to ψ†(z)ψ (z′) =(z z′)−2∆ for z > z′ . (6) h ± ± i − | | | | I (V,T) = 4eΓ2ImX (ω =eV) and 0 11 Undertheconformalmapachiralprimaryfieldtransformsas I (V,T) = 4eΓ2ImX (ω =eV), AB 12 ψ (x,τ) (2π) 1/2[i dz ]∆ψ (z),andbygoingback to±realtim→eweob−tain d(ivτ±x) ± where X (ω) is the Fouriertransformof the responsefunc- ij tion ( iπ/L )4∆ Xij(t)≡−iθ(t)h[Bi(t),Bj†(0)]iβ, hψ±†(x,t)ψ±(0)iβ = 2πsh2∆[±π(x Tvt iε)/LT], (7) ∓ ± withBi(t) eiH0tBie−iH0tandthethermalaverage ≡ whereεisapositiveinfinitesimalrequiredby(6). Finally,the A = trAe−βH0 desiredresponsefunctionis h iβ tre−βH0 4∆ 2∆ θ(t) π − X (t)= Im sh[π(x x +vt+iε)/L ] sh[π(x x vt iε)/L ] . (8) ij −2π2 L i− j T i− j − − T (cid:18) T(cid:19) (cid:26) (cid:27) When2∆isaninteger,whichwillbethecasehere,thetrans- Weexpectthatboththeelectronsandκparticleswillcon- formX (ω)hasaninfinitenumberofpolesoforder2∆and tributetotheobservedtunnelingcurrent,aswillthefilledLan- ij canbeobtainedbyresiduesummation.Notethatthelocalre- daulevel. Ifonlyelectronstunnel,theywillcontribute sponsefunctionwhichdeterminesthedirectcurrentI could 0 beobtainedasthelimit X (ω)= lim X (ω). 11 12 |x1−x2|→0 e γ2∆ǫ T 4 eV T 2 eV 3 eV 5 I(el) = el 64 2π +20 2π + 2π , (9) 0 h240π2 T ∆ǫ T ∆ǫ ∆ǫ ( (cid:18) 0(cid:19) (cid:18) (cid:19) (cid:18) 0(cid:19) (cid:18) (cid:19) (cid:18) (cid:19) ) and e2γ2∆ǫ (T/T )3 πeV 2 T 2 T πeV πeV T T πeV I(el) = el 0 2 +2 1 3cth2 sin +6 cth cos , AB h π sh3(T/T0)(cid:26)(cid:20) (cid:18) ∆ǫ (cid:19) (cid:18)T0(cid:19) (cid:18) − (cid:18)T0(cid:19)(cid:19)(cid:21) (cid:18) ∆ǫ (cid:19) (cid:18) ∆ǫ (cid:19)T0 (cid:18)T0(cid:19) (cid:18) ∆ǫ (cid:19)(cid:27) (10) 4 whichisidenticaltothatoftheg =1/3chiralLuttingerliquid I(FL) =(e2/h)2γ2 V and 0 FL [24,25]. Here e ∆ǫ (T/T ) πeV T0 ≡~v/πkBL, (11) IA(FBL) = h2γF2L π sh(T/T00)sin(cid:18) ∆ǫ (cid:19). (12) isatemperaturescaleassociatedwiththelevelspacingofthe Thecontributionfromtheκchannelaloneis antidotedgestate ofvelocityv andcircumferenceL. Above T0, the thermal length LT becomes smaller than L, and the I(κ) = e24γκ2 T 2V 1+ 1 eV 2 , (13) AB oscillations become washed out. γ Γ/(vL2∆ 1) is 0 h 3 T 4 πk T ≡ − (cid:18) 0(cid:19) " (cid:18) B (cid:19) # a dimensionless tunneling amplitude. Each of the two filled Landau levels also contributes a Fermi liquid (FL) current and e2γ2∆ǫ (T/T )2 T T eV eV eV I(κ) = κ 0 2 cth sin π 2π cos π . (14) AB h π sh2(T/T0)(cid:26) (cid:18)T0(cid:19) (cid:18)T0(cid:19) (cid:18) ∆ǫ(cid:19)− ∆ǫ (cid:18) ∆ǫ(cid:19)(cid:27) TheoscillationsoftheABcurrentsasfunctionsofthevoltage h] for the three channels at temperature T = T0 are shown in 22 |e/ 1.0 1/2 Fermi liquid) FigA.n2.experiment will observe these two or three transport nits [2| 00..89 ==13 / 2 ((e lbeoctsroonn)) channels in parallel, the contribution of each determined by u n thebareamplitudesγκ,γel,andγFL.However,theκchannel 2 i 0.7 will always dominatethe electron channelin the low-energy =5/ 0.6 limit. T) for 0.5 (B 0.4 A F∆IG=.21:(κ(ctoulnonreolinnlgin)ea)sTahfeunActhiaornoonfovth–eBaophpmliecduvrroelntatgIeAVB(cVo,mTp)arfeodr ce G 0.3 n to∆ = 3/2(electrontunneling)reducedbyafactorof100andthe cta 0.2 chiralFermiliquidcurrent(∆=1/2)multipliedbyafactorof10at u d T =T0. on 0.1 C 0.0 0 1 2 3 4 5 Temperature T [T0] 80 T/T0=1 FIG.3: (coloronline). Aharonov–Bohm conductances forelectron 60 andκtunnelingatν = 5/2. TheFermiliquidconductance isalso ] / shown. 40 2 | 2| h) 20 e/ V) [( 0 nt I(AB-20 Curre -40 wrehspereectGiv0elayn.dFoGrAthBeaκrechthanendeilrethcetyanredatdhe AB conductances, -60 =1/2 (Fermi Liquid) =1 ( boson) -80 =3/2 (electron) 0 2 4 6 8 10 12 14 16 18 20 Voltage V in units of V0= /e e2 4γ2 T 2 ThelinearconductanceG (dI/dV) forthesechan- G(κ)(T) = κ , nelstakestheform ≡ V→0 0 (cid:18)h(cid:19) 3 (cid:18)T0(cid:19) e2 (T/T )2 T T µ G(κ)(T) = 4γ2 0 cth 1 , G(φ,T)=G0(T)+cos 2π ∆ǫ +φ GAB(T), AB (cid:18)h(cid:19) κsh2(T/T0)(cid:20)(cid:18)T0(cid:19) (cid:18)T0(cid:19)− (cid:21) h (cid:16) (cid:17)i 5 ContractNo.F-1406. MRGwassupportedbytheNSFunder TABLE II: Asymptotic tunneling conductance. T0 is a crossover grantsDMR-0093217andCMS-040403. temperaturedefinedinEq.(11). eV ≪kBT ≪kBT0 eV ≪kBT0 ≪kBT Fermiliquid G0 ∼const G0 ∼const [1] R.E.PrangeandS.M.Girvin,eds.,TheQuantumHallEffect ∆= 12 GAB ∼const GAB ∼Te−T/T0 (Springer-Verlag,Berlin,1990),2nded. κparticle G0 ∼T2 G0 ∼T2 [2] S. Das Sarmaand A. Pinczuk, eds., Perspectives in Quantum ∆=1 GAB ∼T2 GAB∼T3e−2T/T0 HallEffects(Wiley,NewYork,1997). [3] R.B.Laughlin,Phys.Rev.Lett.50,1395(1983). electron G0 ∼T4 G0 ∼T4 [4] V.J.GoldmanandB.Su,Science267,1010(1995). ∆= 32 GAB ∼T4 GAB∼T5e−3T/T0 [5] L.Saminadayar,D.C.Glattli,Y.Jin,andB.Etienne,Phys.Rev. Lett.79,2526(1997). [6] R. de Picciotto, M. Reznikov, M. Meiblum, V. Umansky, G.Bunin,andD.Mahalu,Nature(London)389,162(1997). whilefortheelectronchannelweobtain [7] F.E.Camino, W.Zhou, andV. J.Goldman, Phys.Rev.B 72, e2 4 T 4 75342(2005). G(el)(T) = 4γ2 , [8] R. Willett, J. P. Eisenstein, H. L. Stormer, D. C. Tsui, A. C. 0 h el 15 T (cid:18) (cid:19) (cid:18) (cid:19)(cid:18) 0(cid:19) Gossard,andJ.H.English,Phys.Rev.Lett.59,1776(1987). e2 (T/T )3 [9] W.Pan,J.S.Xia,V.Shvarts,D.E.Adams,H.L.Stormer,D.C. G(el)(T) = 4γ2 0 Tsui,L.N.Pfeiffer,K.W.Baldwin,andK.W.West,Phys.Rev. AB h elsh3(T/T ) × (cid:18) (cid:19) 0 Lett.83,3530(1999). T 2 T T T [10] J.P.Eisenstein,K.B.Cooper,L.N.Pfeiffer,andK.W.West, cth2 +3 cth . Phys.Rev.Lett.88,76801(2002). T T T T "(cid:18) 0(cid:19) (cid:18) 0(cid:19) (cid:18) 0(cid:19) (cid:18) 0(cid:19)# [11] J.S.Xia,W.Pan,C.L.Vicente,E.D.Adams,N.S.Sullivan, H.L.Stormer,D.C.Tsui,L.N.Pfeiffer,K.W.Baldwin,and TheseconductancesarecomparedtotheFermiliquidones K.W.West,Phys.Rev.Lett.93,176809(2004). [12] G.MooreandN.Read,Nuc.Phys.B360,362(1991). G(FL)(T) = e2 2γ2 , [13] R.H.Morf,Phys.Rev.Lett.80,1505(1998). 0 h FL [14] E.H.RezayiandF.D.M.Haldane,Phys.Rev.Lett.84,4685 (cid:18) (cid:19) (2000). G(FL)(T) = e2 2γ2 (T/T0) [15] Thisisnormalizedaccordingtohφ(z)φ(z′)i=−ln(z−z′). AB (cid:18)h(cid:19) FLsh(T/T0) [16] N.ReadandD.Green,Phys.Rev.B61,10267(2000). [17] D.A.Ivanov,Phys.Rev.Lett.86,268(2001). andareplottedinFig.3.Boththeelectronandκcontributions [18] A. Stern, F. von Oppen, and E. Mariani, Phys. Rev. B 70, displayapronouncedmaximumasafunctionoftemperature. 205338(2004). Inthe T 0 limitthe κ contribution,varyingasT2,domi- [19] S.DasSarma,M.Freedman,andC.Nayak,Phys.Rev.Lett.94, natesthe→electroncontribution. Thetemperaturedependence 166802(2005). [20] A.Y.Kitaev,Ann.Phys.303,2(2003). ofGinthelow-andhigh-temperatureregimesissummarized [21] N.ReadandE.Rezayi,Phys.Rev.B59,8084(1999). inTableII. Thereisalsoaninterestingzero-temperaturenon- [22] A.SternandB.I.Halperin,eprintcond-mat/0508447. linearregimek T eV k T ,whereboththedirectand B B 0 [23] P. Bonderson, A. Kitaev, and K. Shtengel, eprint cond- ≪ ≪ ABcurrentsvaryasI(κ) V3 andI(el) V5,independent mat/0508616. ∼ ∼ oftemperature. Finally,wealsonotethatthelimitofasingle [24] M.R.GellerandD.Loss,Phys.Rev.B56,9692(1997). ν = 5/2quantumpointcontact(inthestable,strongtunnel- [25] C.Chamon,D.E.Freed,S.A.Kivelson,S.L.Sondhi,andX.G. ingregime)followsfromourresultsbylettingT ;the Wen,Phys.Rev.B55,2331(1997). 0 → ∞ [26] K.Moon,H.Yi,C.L.Kane,S.M.Girvin,andM.P.A.Fisher, electroncontributioninthiscaseagreeswiththatfortunneling Phys.Rev.Lett.71,4381(1993). betweenaFLandν =5/2edgestate[32]. [27] Thisassumes,ofcourse,thatthereisastablestrong-tunneling Inconclusion,wehaveusedtheCFTpictureofMooreand fixedpointhere,andthattherearenootherstablefixedpoints. Read [12] to calculate the AB tunneling spectrum in a ν = [28] P.Fendley, A.W.W.Ludwig, andH.Saleur, Phys.Rev.Lett. 5/2antidotgeometry. Observingtheelectronandpossiblyκ 74,3005(1995). transport channels will give evidence in support of the non- [29] A.Cappelli,L.S.Georgiev,andI.T.Todorov,Commun.Math. Abeliannatureofthe5/2state. Phys.205,657(1999). [30] L.S.Georgiev,Nuc.Phys.B651,331(2003). WethankAdySternforusefuldiscussions. LSGhasbeen [31] M.MilovanovicandN.Read,Phys.Rev.B53,13559(1996). partiallysupportedbytheFP5-EUCLIDNetworkProgramof [32] N.ReadandE.Rezayi,Phys.Rev.B54,16864(1996). the EC under Contract No. HPRN-CT-2002-00325 and by theBulgarianNationalCouncilforScientificResearchunder

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.