ebook img

Advances in Planar Filters Design PDF

426 Pages·2019·205.955 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advances in Planar Filters Design

Advances in Planar Filters Design Relatedtitlesonelectromagneticwaves: DielectricResonators,2ndEditionKajfezandGuillon ElectronicApplicationsoftheSmithChartSmith FiberOpticTechnologyJha FilteringintheTimeandFrequencyDomainsBlinchikoffandZverev HFFilterDesignandComputerSimulationRhea HFRadioSystemsandCircuitsSabin MicrowaveField-EffectTransistors:Theory,designandapplication,3rdEditionPengelly MicrowaveSemiconductorEngineeringWhite MicrowaveTransmissionLineImpedanceDataGunston OpticalFibersandRF:AnaturalcombinationRomeiser OscillatorDesignandComputerSimulationRhea Radio-ElectronicTransmissionFundamentals,2ndEditionGriffith,Jr RFandMicrowaveModelingandMeasurementTechniquesforFieldEffectTransistors JianjunGao RFPowerAmplifiersAlbulet SmallSignalMicrowaveAmplifierDesignGrosch SmallSignalMicrowaveAmplifierDesign:SolutionsGrosch 2008þSolvedProblemsinElectromagneticsNasar Antennas:Fundamentals,design,measurement, 3rdEdition BlakeandLong DesigningElectronicSystemsforEMCDuff ElectromagneticMeasurementsintheNearField,2ndEditionBienkowskiandTrzaska FundamentalsofElectromagneticswithMATLAB‡,2ndEditionLonngrenetal. FundamentalsofWavePhenomena,2ndEditionHiroseandLonngren IntegralEquationMethodsforElectromagneticsVolakisandSertel IntroductiontoAdaptiveArrays,2ndEditionMonzingoetal. MicrostripandPrintedAntennaDesign,2ndEditionBancroft NumericalMethodsforEngineering:AnintroductionusingMATLAB‡and computationalelectromagneticsWarnick ReturnoftheEtherDeutsch TheFiniteDifferenceTimeDomainMethodforElectromagnetics:WithMATLAB‡ simulationsElsherbeniandDemir TheoryofEdgeDiffractioninElectromagneticsUfimtsev ScatteringofWedgesandConeswithImpedanceBoundaryConditionsLyalinovandZhu CircuitModelingforElectromagneticCompatibilityDarney TheWiener–HopfMethodinElectromagneticsDanieleandZich MicrowaveandRFDesign:Asystemsapproach,2ndEditionSteer SpectrumandNetworkMeasurements,2ndEditionWitte EMITroubleshootingCookbookforProductDesignersAndreandWyatt TransmissionLineTransformersRaymondMackandJerrySevick ElectromagneticFieldStandardsandExposureSystemsGrudzinskiandTrzaska PracticalCommunicationTheory,2ndEditionAdamy ComplexSpaceSourceTheoryofSpatiallyLocalizedElectromagneticWavesSeshadri ElectromagneticCompatibilityPocketGuide:KeyEMCfacts,equationsanddataWyatt andJost AntennaAnalysisandDesignUsingFEKOElectromagneticSimulationSoftware Elsherbeni,NayeriandReddy ScatteringofElectromagneticWavesbyObstaclesKristensson AdjointSensitivityAnalysisofHighFrequencyStructureswithMATLAB‡Bakr,Elsherbeni andDemir DevelopmentsinAntennaAnalysisandSynthesisvol1andvol2Mittra Advances in Planar Filters Design Edited by Jiasheng Hong The Institution of Engineering andTechnology PublishedbySciTechPublishing,animprintofTheInstitutionofEngineeringand Technology,London,UnitedKingdom TheInstitutionofEngineeringandTechnologyisregisteredasaCharityinEngland& Wales(no.211014)andScotland(no.SC038698). †TheInstitutionofEngineeringandTechnology2019 Firstpublished2019 ThispublicationiscopyrightundertheBerneConventionandtheUniversalCopyright Convention.Allrightsreserved.Apartfromanyfairdealingforthepurposesofresearch orprivatestudy,orcriticismorreview,aspermittedundertheCopyright,Designsand PatentsAct1988,thispublicationmaybereproduced,storedortransmitted,inany formorbyanymeans,onlywiththepriorpermissioninwritingofthepublishers,orin thecaseofreprographicreproductioninaccordancewiththetermsoflicencesissued bytheCopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethose termsshouldbesenttothepublisherattheundermentionedaddress: TheInstitutionofEngineeringandTechnology MichaelFaradayHouse SixHillsWay,Stevenage Herts,SG12AY,UnitedKingdom www.theiet.org Whiletheauthorandpublisherbelievethattheinformationandguidancegiveninthis workarecorrect,allpartiesmustrelyupontheirownskillandjudgementwhenmaking useofthem.Neithertheauthorsnorpublisherassumesanyliabilitytoanyoneforany lossordamagecausedbyanyerrororomissioninthework,whethersuchanerroror omissionistheresultofnegligenceoranyothercause.Anyandallsuchliabilityis disclaimed. Themoralrightsoftheauthorstobeidentifiedasauthorsofthisworkhavebeen assertedbyhiminaccordancewiththeCopyright,DesignsandPatentsAct1988. BritishLibraryCataloguinginPublicationData AcataloguerecordforthisproductisavailablefromtheBritishLibrary ISBN978-1-78561-589-4(hardback) ISBN978-1-78561-590-0(PDF) TypesetinIndiabyMPSLimited PrintedintheUKbyCPIGroup(UK)Ltd,Croydon Contents Preface xi 1 Introduction 1 Jiasheng Hong Reference 3 2 Planar millimeter-wave andterahertz filters 5 Zhang-Cheng Hao 2.1 Introduction 5 2.2 Compact planar millimeter-wave filter usingmultiple-mode SIWcavities 6 2.3 Design SIW components usingthe space-mapping method 12 2.3.1 Design compact SIW multiplexersusingthe space-mapping method withequivalent rectangular-waveguide coarse-model 13 2.3.2 Design W-band bandpass filters using the space-mapping method withcoupling-matrixcoarse-model 24 2.4 Developing planar terahertz filters usingthe deep reactive ion-etching (DRIE) process 31 2.5 Summary 50 References 50 3 Advances inplanar coaxial SIWresonator filters design 59 StefanoSirci, Jorge D.Mart´ınez,Miguel A´ngel Sa´nchez-Soriano, and Vicente E. Boria 3.1 Introduction 59 3.2 Coaxial SIWtechnology 60 3.2.1 Study of a coaxial SIWcavity 60 3.2.2 Filter synthesis 61 3.2.3 EM performance of coaxial SIW resonators 64 3.3 Coaxial SIWBPFs 66 3.3.1 Magnetic coupling 66 3.3.2 Electric coupling 68 3.3.3 In-line configuration: design examples 69 3.3.4 Cross-coupling configuration: designexamples 71 vi Advances in planar filters design 3.3.5 Power-handling capabilityof coaxial SIW filters 73 3.3.6 Diplexer 75 3.4 Advanced topologies forcoaxial SIWresonators 76 3.4.1 Dual-mode coaxial SIW topology 76 3.4.2 Coaxial SIWsinglet 81 3.5 Summary 84 References 85 4 Planar lossyfilters for satellite transponders 89 Ste´phane Bila, Ahmed Basti, Aure´lien Pe´rigaud, Serge Verdeyme, Laetitia Estagerie, Ludovic Carpentier, and Herve´ Leblond 4.1 Introduction 89 4.2 Impact of lossesonfilter performances 90 4.2.1 Relation between quality factor and insertion losses 90 4.2.2 Compensation bypredistortion 92 4.2.3 Synthesis of lossyfilters 92 4.3 Reference design: hairpin microstripfilter 94 4.4 Design of lossyfilters for improved flatness 98 4.4.1 Inline network with resistive crosscouplings 98 4.4.2 Transversal network with nonuniform Qresonators 103 4.5 Design of absorptive lossyfilters forattenuation of reflected waves 108 4.5.1 Symmetric absorptive lossy filter 108 4.5.2 Asymmetric absorptive lossyfilters 111 4.6 Summary 116 References 117 5 Microstrip extracted-pole lossy filters 121 ZhouZhouand Jiasheng Hong 5.1 Introduction 121 5.2 Filter designfrom system perspective 122 5.3 Microwave lossy filter technique 123 5.3.1 RCC in inline network 124 5.3.2 Non-uniform Qresonators for transversal network 126 5.4 Extracted-pole filter technique 128 5.4.1 Synthesis procedure 128 5.4.2 Design example 130 5.5 Microstrip extracted-pole lossyfilter 133 5.5.1 Design of five-pole extracted-pole lossy filter 133 5.5.2 Design of six-pole extracted-pole lossy filter 135 5.6 Summary 146 References 146 Contents vii 6 Planar reflectionless filters 149 Matthew A. Morgan 6.1 Introduction 149 6.2 Reflectionless network topology 149 6.2.1 Even- and odd-mode analysis 151 6.2.2 Transfer function of the reflectionless filter 153 6.3 Other approaches and limitations 154 6.3.1 Diplexers or complementary-susceptance networks 155 6.3.2 Hybrid-coupled balanced filter 156 6.3.3 Constant-resistance lattice chains 156 6.3.4 Limiting ripple factor of the reflectionless topology 157 6.4 Scaled prototype parameter tables 158 6.5 Planar lumped-element implementations 160 6.6 Delta-wye transformation for reduced impedance 163 6.7 Non-canonical filter responses 164 6.7.1 Achieser–Zolotarev reflectionless filters 164 6.7.2 Filters with uniform element values 166 6.7.3 Pseudo-elliptic and other topologies 167 6.8 Transmission-line reflectionless filters 168 6.9 Chebyshev and Zolotarev type I filters 172 6.10 Summary 173 References 174 7 Absorptive planar bandstopfilters 177 Yo-Shen Linand Jhih-Ying Shao 7.1 Introduction 177 7.2 Filter prototypes and designconcept 178 7.3 Narrowband absorptive bandstop filters 179 7.3.1 Filter design 179 7.3.2 Filter implementation 188 7.3.3 Filter implementation with half-wavelength resonators 194 7.4 Wideband absorptive bandstop filters 198 7.4.1 Basic filter structure 198 7.4.2 Design modifications 206 7.4.3 Filter implementation 212 7.5 Summary 217 References 217 8 Acoustic-wave-lumped-element-resonator-basedbandpassfilters 219 Dimitra Psychogiou and Roberto Go´mez-Garc´ıa 8.1 Introduction 219 8.2 Acoustic-wave resonators 220 8.2.1 Coupling-matrix-based modeling 220 viii Advances in planar filters design 8.3 Acoustic-wave-lumped-element resonators 223 8.3.1 Series configuration 224 8.3.2 Parallel configuration 225 8.4 Quasi-elliptic-type bandpass filters usinga hybrid combination of high-Qand low-Qresonator modules 225 8.4.1 Hybrid high-Q/low-Qresonator modules 225 8.4.2 RFdesignof high-order transfer functions 227 8.5 Tunable bandpass filters using acoustic-wave resonators 231 8.5.1 Single-band AWLR-based bandpassfilters 231 8.5.2 Multi-band AWLR-based bandpassfilters 237 8.6 Constant-in-band-group-delay AWLR-based bandpass filters and RFdiplexers 239 8.6.1 Bandpass filter withflat in-band group delay 241 8.6.2 RFdiplexers withflat in-band groupdelay 245 8.7 Summary 249 References 249 9 Tunableandreconfigurable SIWfilters 251 Juseop Lee 9.1 Introduction 251 9.2 Frequency-tunable bandpass filter 252 9.2.1 Introduction 252 9.2.2 Resonator 253 9.2.3 K-band bandpassfilter 256 9.3 Bandstop filter 264 9.3.1 Introduction 264 9.3.2 Second-order bandstop filter 264 9.3.3 Third-order bandstop filter 267 9.3.4 Fourth-order bandstop filter 275 9.4 Multifunctionfilter 280 9.5 Summary 291 References 292 10 Superconductingdual-bandfilters 297 Haiwen Liu andBaoping Ren 10.1 Introduction 297 10.2 Compact two-pole dual-band HTSfilters 298 10.2.1 Miniaturization design usingsplit ring resonator 298 10.2.2 Compact stepped-impedance resonators filter with multiple transmission zeros 300 10.2.3 Multimode-resonator dual-band HTSfilters 302 10.3 High-order HTSdual-band BPFsondual-mode HRR 306 10.3.1 Properties of dual-mode HRR 306 10.3.2 Design of third-order HTSdual-band filter 311 Contents ix 10.3.3 Design of eighth-order HTSdual-band filter 317 10.3.4 Fabrication and experimental verification 321 10.4 Summary 322 References 322 11 Balunbandpassfilters 325 Jianpeng Wang, Feng Huang,andXuedaoWang 11.1 Introduction 325 11.2 Balun topology 326 11.2.1 Basic design concept 326 11.2.2 Theoretical analysis 327 11.2.3 Coupled line prototypes 329 11.3 Dual-mode balun bandpass filters 333 11.3.1 Geometric construction 333 11.3.2 Design 335 11.3.3 Experimental verification 336 11.3.4 Improvement for miniaturizationand stopband rejection 338 11.4 Dual-mode dual-band balun bandpass filter 341 11.4.1 Geometric construction 341 11.4.2 Design 341 11.4.3 Experimental verification 342 11.5 Wideband balun bandpass filters 345 11.5.1 Tri-mode balun filter 345 11.5.2 Quad-mode balun filter fordipole antenna application 348 11.6 Dual-mode balun diplexer 354 11.7 Transition structure-based balun bandpass filters 358 11.7.1 Balun filter usingCPW-microstrip and CPS-microstrip transitions 358 11.7.2 Balun filter usingmicrostrip-to-slotline transitions 361 11.7.3 Ultra wideband balun filter usingbroadside-coupled structure 366 11.8 Summary 370 References 370 12 Millimetre wave SIWdiplexer withrelaxed fabrication tolerances 373 J. RossAitken and Jiasheng Hong 12.1 Introduction 373 12.2 Equivalence between SIWand DWG 374 12.2.1 Design of SIWcomponents 377 12.3 Diplexer overview 378 12.3.1 Hybrid coupler type diplexeroperation 379 12.4 SIW diplexer with relaxed fabrication tolerances 381 12.4.1 DWGbandpassfilter design 382 12.4.2 DWGhighpassfilter design 384

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.