ebook img

Advanced Materials and Components for 5G and Beyond PDF

276 Pages·2022·15.597 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced Materials and Components for 5G and Beyond

Springer Series in Materials Science 327 Colin Tong Advanced Materials and Components for 5G and Beyond Springer Series in Materials Science Volume 327 Series Editors Robert Hull, Center for Materials, Devices, and Integrated Systems Rensselaer Polytechnic Institute Troy, NY, USA Chennupati Jagadish, Research School of Physics and Engineering Australian National University Canberra, ACT, Australia Yoshiyuki Kawazoe, Center for Computational Materials Tohoku University Sendai, Japan Jamie Kruzic, School of Mechanical & Manufacturing Engineering UNSW Sydney Sydney, NSW, Australia Richard Osgood jr., Columbia University Wenham, MA, USA Jürgen Parisi, Universität Oldenburg Oldenburg, Germany Udo W. Pohl, Institute of Solid State Physics Technical University of Berlin Berlin, Germany Tae-Yeon Seong, Department of Materials Science & Engineering Korea University Seoul, Korea (Republic of) Shin-ichi Uchida, Electronics and Manufacturing National Institute of Advanced Industrial Science and Technology Tsukuba, Ibaraki, Japan Zhiming M. Wang, Institute of Fundamental and Frontier Sciences - Electronic University of Electronic Science and Technology of China Chengdu, China The Springer Series in Materials Science covers the complete spectrum of materials research and technology, including fundamental principles, physical properties, materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series reflect the state- of- the-art in understanding and controlling the structure and properties of all important classes of materials. Colin Tong Advanced Materials and Components for 5G and Beyond Colin Tong Bolingbrook, IL, USA ISSN 0933-033X ISSN 2196-2812 (electronic) Springer Series in Materials Science ISBN 978-3-031-17206-9 ISBN 978-3-031-17207-6 (eBook) https://doi.org/10.1007/978-3-031-17207-6 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland This book is dedicated to my wife Dali and to our family. Preface The rapidly increasing number of mobile devices, voluminous data, and higher data rate is pushing the development of fifth-generation (5G) and beyond wireless com- munications. The 5G networks are broadly characterized by ubiquitous connectiv- ity, extremely low latency, and very high-speed data transfer via the adoption of new technology to equip future millimeter band wireless communication systems down to nanoscale and massive multi-input multi-output (MIMO) with extreme base sta- tion and device densities, as well as unprecedented numbers of antennas. 5G has become a novel driving force for leading innovation and stimulating new types of information technology, as well as an emerging engine for promoting industrial upgrading and driving sustained economic growth. 5G is not an incremental improvement over previous generations and thus requires a new set of materials, including plastics, metals, ceramics, composites, nanomaterials, and functional materials. Due to the construction of 5G network systems and the popularization of 5G terminals, demand for components such as base station antennas, filters, EMI shields, protective films and sealants, thermal management solutions, and high- frequency printed circuit boards (PCBs) has increased. Clearly, 5G and beyond technology is still under development, with improvements to well meet future unknown requirements and the formulation of better strategies for its utilization in the fully connected world. Therefore, there is much work to do for scientists and engineers to achieve breakthroughs in material development, component design, and related technological innovations. To meet the demands of students, scientists, engineers, and marketing technolo- gists for a systematic reference source, Advanced Materials and Components for 5G and Beyond introduces the current status and future trends of material advance- ment and component design in technology development for 5G and beyond wireless communications. Coverage includes semiconductor solutions for 5G electronics, design and performance enhancement for 5G antennas, high frequency PCB materi- als and design requirements, materials for high frequency filters, EMI shielding materials and absorbers for 5G systems, thermal management materials and compo- nents, and protective packaging and sealing materials for 5G devices. It explores fundamental physics, design, and engineering aspects, as well as the full array of vii viii Preface state-of-the art applications of 5G and beyond wireless communications. Future challenges and potential trends of 5G and beyond applications and related materials technologies are also addressed. It is a great pleasure to acknowledge the help and support I have received from my colleagues and friends. I would like to express my sincere gratitude to Dr. Sam Harrison and all other editors who have done a fantastic job on the publication of this book. Bolingbrook, IL, USA Colin Tong Contents 1 5G Technology Components and Material Solutions for Hardware System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Evolution of 5G Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 5G Technology Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 5G Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Massive Multiple-Input Multiple-Output (MIMO) Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Network Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Dual Connectivity and Long Term Evolution (LTE) Coexistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.5 Support for Cloud Implementation and Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Materials Solutions for 5G Hardware System Integration . . . . . . . . 9 1.3.1 Evolution of the Cellular Base Station and Its Construction Materials . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.2 Drivers to 5G Hardware System Integration . . . . . . . . . . . . 12 1.3.3 Materials and Electronic Components for 5G Packaging Technology . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.4 Nanomaterials for Nanoantennas in 5G . . . . . . . . . . . . . . . . 26 1.4 Challenges in 5G and Beyond – 6G . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5 Outlook and Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 Semiconductor Solutions for 5G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1 Evolution of 5G Semiconductor Technologies . . . . . . . . . . . . . . . . 33 2.2 Effect of CMOS Technology Scaling on Millimeter Wave Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 Distributed and Lumped Design Approaches for Fabricating Passives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.1 Distributed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.2 Lumped approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ix x Contents 2.4 Comparison of Silicon and III-V Semiconductors . . . . . . . . . . . . . . 43 2.5 Transistor Model Design Challenge in CMOS Technology . . . . . . 45 2.6 GaN and GaN-on-SiC Wide Bandgap Semiconductors for 5G Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.6.1 Characteristics of GaN Devices Applied in 5G Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.6.2 GaN Power Integration for MMIC in 5G Technology . . . . . 50 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 Design and Performance Enhancement for 5G Antennas . . . . . . . . . 57 3.1 5G Antenna Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.1 Classification Based on Input and Output Ports . . . . . . . . . 58 3.1.2 Classification Based on Antenna Types . . . . . . . . . . . . . . . . 60 3.2 Performance Enhancement Techniques for 5G Antenna Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2.1 General Antenna Performance Enhancement Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2.2 Mutual Coupling Reduction (Decoupling) Techniques . . . . 64 3.3 Structural Design and Building Materials of 5G Antennas . . . . . . . 66 3.3.1 SISO Wideband Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2 SISO Multiband Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.3 MIMO Wideband Antennas . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.4 MIMO Multiband Antennas . . . . . . . . . . . . . . . . . . . . . . . . . 74 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4 PCB Materials and Design Requirements for 5G Systems . . . . . . . . . 77 4.1 The Evolution of Printed Circuit Boards . . . . . . . . . . . . . . . . . . . . . 77 4.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.1.2 Materials and Fabrication Process . . . . . . . . . . . . . . . . . . . . 79 4.2 RF and High Frequency PCB Technologies . . . . . . . . . . . . . . . . . . 80 4.2.1 Basic Circuit Configuration of High-Frequency PCBs . . . . 80 4.2.2 Transmission Line Parameters Used in RF/High Frequency PCB Design . . . . . . . . . . . . . . . . . . . . . 82 4.3 Designing High-Frequency PCBs . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.3.1 Variables Affecting the Performance of High-Frequency PCBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.3.2 High-Frequency PCB Layout Techniques . . . . . . . . . . . . . . 90 4.4 Materials Selection of PCBs for Millimeter Wave Applications . . . 93 4.4.1 High-Frequency PCB Material Selection Guidelines . . . . . 94 4.4.2 PCB Materials Used for High-Frequency Applications . . . . 97 4.5 The Role of Materials in High Frequency PCB Fabrication . . . . . . 102 4.6 Material Issues Related to 5G Applications . . . . . . . . . . . . . . . . . . . 104 4.6.1 Mixed Signal Acceptance Circuit Board Designs . . . . . . . . 104 4.6.2 EMI Shielding Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.6.3 Impedance Control and Signal Loss . . . . . . . . . . . . . . . . . . 105

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.