ebook img

Addendum to "On Super-Jordanian ${\cal U}_{\sf h}(sl(N|1))$ Algebra PDF

0.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Addendum to "On Super-Jordanian ${\cal U}_{\sf h}(sl(N|1))$ Algebra

ADDENDUM TO ”ON SUPER-JORDANIAN sl N U ( ( |1)) h ALGEBRA” B. ABDESSELAMa, A. CHAKRABARTIb, R. CHAKRABARTIc, A. YANALLAHd and M.B ZAHAFe a,d,eLaboratoire de Physique Quantique de la Mati`ere et Mod´elisations Math´ematiques (LPQ3M), Centre Universitaire de Mascara, 29000-Mascara, Alg´erie aLaboratoire de Physique Th´eorique d’Oran, Universit´e d’Oran Es-S´enia, 31100-Oran, Alg´erie bCentre de Physique Th´eorique, Ecole Polytechnique, 91128-Palaiseau cedex, France. 7 cDepartment of Theoretical Physics, University of Madras, Guindy Campus, Madras 600025, India 0 0 Abstract 2 We give a complete proof of the result (2.10) presented in our paper published in J. Phys. A: Math. n a Gen. 39 (2006) 8307–8319. J 1. Let U (sl(2|1)) (q is an arbitrary complex number)betheHopf superalgebragenerated by the elements 3 q 1 hˆ , eˆ and fˆ, i= 1,2, satisfy the relations i i i ] [hˆ , hˆ ]= 0, [hˆ , eˆ ] = a eˆ , [hˆ , fˆ]= −a fˆ, A i j i j ij j i j ij j Q qhˆi −q−hˆi [eˆ, fˆ] =δ , eˆ2 = fˆ2 = 0, . i j ij q−q−1 2 2 h t eˆ2eˆ − q+q−1 eˆ eˆ eˆ +eˆ eˆ2 = 0, fˆ2fˆ − q+q−1 fˆfˆfˆ +fˆfˆ2 = 0, (1) a 1 2 1 2 1 2 1 1 2 1 2 1 2 1 m (cid:16) (cid:17) (cid:16) (cid:17) [ where [ , ] is the supercommutator given by [a, b] = ab−(−)deg(a)deg(b)ba and a11 = 2, a12 = a21 = −1, a = 0. All generators are even except for eˆ and fˆ which are odd. The coproducts, counits and antipodes 1 22 2 2 v are given by 9 7 ∆(eˆ)= eˆ ⊗qhˆi/2+q−hˆi/2⊗eˆ, ǫ(eˆ) = 0, S(eˆ) = −qhˆi/2eˆq−hˆi/2, i i i i i i 3 1 ∆ fˆ = fˆ ⊗qhˆi/2+q−hˆi/2⊗fˆ, ǫ(fˆ)= 0, S(fˆ)= −qhˆi/2fˆq−hˆi/2, i i i i i i 0 (cid:16) (cid:17) 7 ∆ hˆ = hˆ ⊗1+1⊗hˆ , ǫ(hˆ )= 0, S(hˆ )= −hˆ . (2) i i i i i i 0 (cid:16) (cid:17) / h Let eˆ = eˆ eˆ −q−1eˆ eˆ and fˆ = fˆfˆ −qfˆfˆ. Khroshkin, Tolstoy [1] and Yamane [2] showed that 3 1 2 2 1 3 2 1 1 2 t a R = Rˆ K , (3) m q q q : where v i X K = q−h1⊗h2−h2⊗h1−2h2⊗h2, q ar Rˆ =exp q−q−1 q−h1/2eˆ ⊗fˆqh1/2 exp − q−q−1 q−h1/2−h2/2e ⊗fˆqh1/2+h2/2 × q q 1 1 q 3 3 h(cid:16) (cid:17) i h (cid:16) (cid:17) i exp − q−q−1 q−h2/2eˆ ⊗fˆqh2/2 (4) q 2 2 h (cid:16) (cid:17) i and exp (x) = xn/(n) !, (n) ! = (1) (2) ···(n) , (n) = 1−qk. In the (fund.)⊗(arbitrary) representa- q n≥0 q q q q q q 1−q tion, the R-matPrix (3) takes the following form: q−h2 A B   R | = 0 q−h1−h2 C , (5) q (fund.⊗arb.)        0 0 q−h1−2h2   where A = q−q−1 q−1/2fˆq−h1/2−h2, 1 (cid:16) (cid:17) 2 B = − q−q−1 q−1fˆqh1/2fˆq−h1−3h2/2− q−q−1 q−1/2fˆq−h1/2−3h2/2, 1 2 3 (cid:16) (cid:17) (cid:16) (cid:17) C = q−q−1 q−1/2fˆq−h1−3h2/2, (6) 2 (cid:16) (cid:17) 2. The R -matrix in the (fund.)⊗(arbitrary) representation is obtained, from (5), as follows: h G−1 − h G−1 0 G h G 0 q−1 q−1     R | = lim 0 G−1 0 R | 0 G 0 h (fund.⊗arb.) q→1  q (fund.⊗arb.)       0 0 G−1 0 0 G     G−1q−h2G α β   = lim 0 G−1q−h1−h2G γ , (7)   q→1     0 0 G−1q−h1−2h2   where h α = G−1q−h2G−G−1q−h1−h2G + q−q−1 q−1/2G−1fˆq−h1/2−h2G, 1 q−1(cid:16) (cid:17) (cid:16) (cid:17) 2 β = − q−q−1 q−1G−1fˆqh1/2fˆq−h1−3h2/2G− q−q−1 q−1/2G−1fˆq−h1/2−3h2/2G+ 1 2 3 (cid:16) (cid:17) (cid:16) (cid:17) h q−q−1 q−1/2G−1fˆq−h1−3h2/2G 2 q−1 (cid:16) (cid:17) γ = − q−q−1 q−1/2G−1fˆq−h1−3h2/2G (8) 2 (cid:16) (cid:17) and G= E h eˆ , E (x)= xn/[n]!, [n]!= [n]···[1], [n]= qn−q−n. q q−1 1 q n≥0 q−q−n (cid:16) (cid:17) 3. Defining P h h t(α) = E−1 eˆ E qα eˆ , t(0) = 1, (9) q (cid:18)q−1 1(cid:19) q(cid:18) q−1 1(cid:19) we obtain the following properties: heˆ heˆ E−1 1 qαh1/2E 1 = t(α)qαh1/2, (10) q (cid:18)q−1(cid:19) q(cid:18)q−1(cid:19) t(α+β)q(α+β)h1/2 = t(α)qαh1/2t(β)qβh1/2, (11) heˆ heˆ E−1 1 qβh2E 1 = t(−β)qβh2, (12) q (cid:18)q−1(cid:19) q(cid:18)q−1(cid:19) heˆ heˆ h E−1 1 fˆE 1 = fˆ − t(1)qh1 −t(−1)q−h1 , (13) q (cid:18)q−1(cid:19) 1 q(cid:18)q−1(cid:19) 1 (q−1)(q−q−1)(cid:16) (cid:17) heˆ heˆ E−1 1 fˆE 1 = fˆ, (14) q (cid:18)q−1(cid:19) 2 q(cid:18)q−1(cid:19) 2 heˆ heˆ hq E−1 1 fˆE 1 = fˆ + t(1)fˆqh1. (15) q (cid:18)q−1(cid:19) 3 q(cid:18)q−1(cid:19) 3 q−1 2 4. Let us introduce the following generator: T = limt(1). (16) q→1 From (11) it is evident that limt(α) = Tα. (17) q→1 To obtain a closed form of T, we proceed as follows: we left and right multiply the commutation relation qh1 −q−h1 = q−q−1 eˆ fˆ −fˆeˆ by G−1 and G respectively. After simple calculations, we reach to 1 1 1 1 (cid:0) (cid:1)(cid:16) (cid:17) t(2)qh1 −t(−2)q−h1 = qh1 −q−h1 +h(q+1) t(1)eˆ qh1 +q−h1eˆ t(−1) , (18) 1 1 h i which yields, when q −→ 1, to T2−T−2 = 2h T +T−1 eˆ ⇒ T −T−1 = 2heˆ . (19) 1 1 (cid:16) (cid:17) Finally, we obtain T±1 = ±heˆ + 1+h2eˆ2. (20) 1 1 q 5. We turn now to (7). It is easy to verify that limG−1q−h2G = limt(1)q−h2 = T, q→1 q→1 limG−1q−h1−h2G = limt(−1)q−h1−h2 = T−1, q→1 q→1 limG−1q−h1−2h2G = 1, q→1 limγ = −lim q−q−1 q−1/2fˆt(−1/2)q−h1−3h2/2 = 0, 2 q→1 q→1(cid:16) (cid:17) ht(1) ht(−1) limα = lim q−q−1 q−1/2fˆ + q−h2 −q−h1/2−h2−1/2 − q−h1−h2 −q−3h1/2−h2−1/2 1 q→1 q→1(cid:16) (cid:17) q−1(cid:16) (cid:17) q−1 (cid:16) (cid:17) h h = − T +T−1 h + T −T−1 1 2 2 (cid:16) (cid:17) (cid:16) (cid:17) h ≡ −hH + T −T−1 , 1 2 (cid:16) (cid:17) h limβ = −lim q−q−1 2q−1 fˆ − t(1)qh1 −t(−1)q−h1 t(1)qh/12fˆt(−1/2)q−h1−3h2/2 q→1 q→1(cid:16) (cid:17) (cid:20) 1 (q−1)(q−q−1)(cid:16) (cid:17)(cid:21) 2 hq − q−q−1 q−1/2 f + t(1)qh1 t(1/2)q−h1/2−3h2/2 3 (cid:16) (cid:17) (cid:20) q−1 (cid:21) h q−q−1 + q−1/2fˆt(−1/2)q−h1−3h2/2 (cid:0)q−1 (cid:1) 2 = 2h T −T−1 T1/2f −2hT3/2f +2hT−1/2f = 0. (21) 2 2 2 (cid:16) (cid:17) Finally, we obtain T −hH + h T −T−1 0 1 2  (cid:0) (cid:1)  R | = 0 T−1 0 . (22) h (fund.⊗fund.)          0 0 1   References [1] Khoroshkin S.M. and Tolstoy V.N., Comm. Math. Phys. 141 (1991), 599. [2] Yamane H., Publ. Res. Inst. Math. Sci. 30 (1994), 1587.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.