ebook img

A parton recombination approach to heavy ion collisions at RHIC and LHC PDF

0.85 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A parton recombination approach to heavy ion collisions at RHIC and LHC

9 0 0 2 n a J A parton re ombination approa h to heavy ion 3 2 ollisions at RHIC and LHC ] h t - l Diploma thesis c u n [ 1 v 7 by Daniel Krieg 1 De ember 2008 6 3 . 1 0 9 0 : v i X r a Für Daniela Contents I Introdu tion 1 I. 1 Curiosity and doubt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 I. 2 The fundamental building blo ks . . . . . . . . . . . . . . . . . . . . . . . 2 I. 3 Ba k to the Big Bang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II Heavy Ion Collisions 5 II. 1 Phase diagram of the strong for e . . . . . . . . . . . . . . . . . . . . . . . 5 II. 2 Theoreti al des riptions of heavy ion ollision . . . . . . . . . . . . . . . . 6 II. 2.1 Statisti al thermal model . . . . . . . . . . . . . . . . . . . . . . . 6 II. 2.2 Quantum hromodynami s (QCD) . . . . . . . . . . . . . . . . . . . 6 II. 2.2.1 Fragmentation (pQCD) . . . . . . . . . . . . . . . . . . . 7 II. 2.2.2 MIT bag model . . . . . . . . . . . . . . . . . . . . . . . 7 II. 2.3 Transport theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 II. 2.4 Hydrodynami s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 II. 2.4.1 Collision geometry . . . . . . . . . . . . . . . . . . . . . . 9 III Hadronization from a QGP 11 III. 1Colinear re ombination of quarks . . . . . . . . . . . . . . . . . . . . . . . 11 III. 1.1Introdu tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 III. 1.2Non-relativisti model . . . . . . . . . . . . . . . . . . . . . . . . . 12 III. 1.3Relativisti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 III. 2Freeze-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 III. 2.1Integration measure . . . . . . . . . . . . . . . . . . . . . . . . . . 17 III. 2.2Surfa e (cid:29)ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 III. 3Blast Wave Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 III. 3.1Azimuthal momentum asymmetry . . . . . . . . . . . . . . . . . . 21 III. 3.2Comparing asymmetry parameters . . . . . . . . . . . . . . . . . . 22 III. 3.2.1 Expansion velo ity . . . . . . . . . . . . . . . . . . . . . . 23 III. 4Observables from re ombination . . . . . . . . . . . . . . . . . . . . . . . . 25 III. 4.1Invariant yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 III. 4.1.1 Central ollisions . . . . . . . . . . . . . . . . . . . . . . . 28 III. 4.1.2 Peripheral ollisions . . . . . . . . . . . . . . . . . . . . . 28 III. 4.2Flow omponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ii Contents III. 4.2.1 Ellipti (cid:29)ow . . . . . . . . . . . . . . . . . . . . . . . . . . 28 III. 4.2.2 Hexade upole (cid:29)ow . . . . . . . . . . . . . . . . . . . . . . 29 p T III. 4.2.3 High- (cid:29)ow . . . . . . . . . . . . . . . . . . . . . . . . . 29 III. 4.3Constituent quark number s aling . . . . . . . . . . . . . . . . . . 29 III. 4.3.1 Ellipti (cid:29)ow s aling . . . . . . . . . . . . . . . . . . . . . 29 III. 4.3.2 Hexade upole (cid:29)ow s aling . . . . . . . . . . . . . . . . . . 32 III. 4.4The breaking of the CQNS . . . . . . . . . . . . . . . . . . . . . . 32 IV Results and predi tions from re ombination 35 IV. 1Overview of the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 35 IV. 1.1Re ombination parameters . . . . . . . . . . . . . . . . . . . . . . . 35 IV. 1.1.1 Quark masses . . . . . . . . . . . . . . . . . . . . . . . . . 35 p T IV. 1.1.2 High- damping . . . . . . . . . . . . . . . . . . . . . . 36 IV. 1.2Freeze-out hypersurfa e parameters . . . . . . . . . . . . . . . . . . 36 IV. 1.2.1 Transverse freeze-out area . . . . . . . . . . . . . . . . . . 36 IV. 1.2.2 Impa tparameter . . . . . . . . . . . . . . . . . . . . . . . 36 IV. 1.2.3 Freeze-out e entri ity . . . . . . . . . . . . . . . . . . . . 36 IV. 1.2.4 Time dependent hypersurfa e . . . . . . . . . . . . . . . . 37 IV. 1.3Blast wave parameters . . . . . . . . . . . . . . . . . . . . . . . . . 37 IV. 1.3.1 Phase boundary . . . . . . . . . . . . . . . . . . . . . . . 37 IV. 1.3.2 Transverse expansion . . . . . . . . . . . . . . . . . . . . 38 IV. 2In(cid:29)uen e of the parameters and parameterisations. . . . . . . . . . . . . . 40 IV. 2.1Delta-shaped wavefun tions . . . . . . . . . . . . . . . . . . . . . . 40 IV. 2.2E(cid:27)e ts of the blast wave parameters . . . . . . . . . . . . . . . . . 40 IV. 2.2.1 Baryo- hemi al potential . . . . . . . . . . . . . . . . . . 40 IV. 2.2.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 40 IV. 2.2.3 Transverse (cid:29)ow rapidity . . . . . . . . . . . . . . . . . . . 41 IV. 2.2.4 Radial pro(cid:28)le of the transverse rapidity . . . . . . . . . . 41 IV. 2.3Separating (cid:29)ow and non-(cid:29)ow e(cid:27)e ts . . . . . . . . . . . . . . . . . 44 IV. 2.3.1 Geometri al ontributions . . . . . . . . . . . . . . . . . . 45 IV. 2.3.2 Flow ontributions . . . . . . . . . . . . . . . . . . . . . . 45 IV. 2.3.3 Relative strength of both ontributions . . . . . . . . . . 46 τ ρ IV. 2.4Correlation between and . . . . . . . . . . . . . . . . . . . . . . 49 IV. 3Transverse momentum spe tra . . . . . . . . . . . . . . . . . . . . . . . . 51 IV. 3.1Yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 IV. 3.2Mean transverse momentum . . . . . . . . . . . . . . . . . . . . . . 51 IV. 3.3Hadron ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 v v 2 4 IV. 4Flow oe(cid:30) ients and . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 IV. 4.1Mean (cid:29)ow oe(cid:30) ients . . . . . . . . . . . . . . . . . . . . . . . . . 57 IV. 4.2E entri ity dependen e . . . . . . . . . . . . . . . . . . . . . . . . 57 IV. 4.2.1 Flu tuations . . . . . . . . . . . . . . . . . . . . . . . . . 59 IV. 4.3Flow ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 τ ρ IV. 4.3.1 In(cid:29)uen e of a − orrelation . . . . . . . . . . . . . . . 62 Contents iii IV. 4.3.2 In(cid:29)uen e of the radial rapidity pro(cid:28)le . . . . . . . . . . . 64 IV. 4.4Di(cid:27)erential (cid:29)ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 IV. 4.5Deuteron (cid:29)ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 IV. 4.6Heavy quark (cid:29)ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 IV. 4.7Centrality dependen e . . . . . . . . . . . . . . . . . . . . . . . . . 73 √s IV. 4.8 dependen e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 IV. 4.9Analyzing the negative ellipti (cid:29)ow . . . . . . . . . . . . . . . . . . 78 V Con lusion 81 Bibliography 83 A Analyti al derivations 89 A. 1 MIT bag model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A. 2 Integrals of the (cid:29)ow oe(cid:30) ients . . . . . . . . . . . . . . . . . . . . . . . . 91 B A knowledgements 95 C Legal stu(cid:27) 97 C. 1 Erklärung der Selbstständigkeit (De laration) . . . . . . . . . . . . . . . . 97 C. 2 Zusammenfassung (german abstra t) . . . . . . . . . . . . . . . . . . . . . 99 List of Figures II.1 The (assumed) phase diagram of the strong for e . . . . . . . . . . . . . 5 II.2 Collision geometry in the transverse plane . . . . . . . . . . . . . . . . . 10 III.1 The two extreme ases for the expansion of (cid:28)reball. . . . . . . . . . . . 19 III.2 Comparison of the impa t parameter dependent e entri ity . . . . . . . 22 III.3 Study of the breaking of onstituent quark number s aling . . . . . . . . 34 T µ B IV.1 Temperature and baryo- hemi al potential . . . . . . . . . . . . . 38 IV.2 Parameterisation of the transverse (cid:29)ow rapidity . . . . . . . . . . . . . . 39 r δ IV.3 Relative deviations of delta-shaped wavefun tions . . . . . . . . . . . 40 IV.4 The invariant yield of pions and protons for di(cid:27)erent transverse (cid:29)ow β T velo ities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 IV.5 The ellipti (cid:29)ow of pions and protons for di(cid:27)erent transverse (cid:29)ow velo - β T ities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 IV.6 The invariant yield of pions andprotons for di(cid:27)erent radial pro(cid:28)les of the transverse rapidity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 IV.7 The ellipti (cid:29)ow of pions and protons for di(cid:27)erent radial pro(cid:28)les of the transverse rapidity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 IV.8 Purely geometri al ontributions to the ellipti (cid:29)ow from an ellipti al freeze-out area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 IV.9 S aled ellipti and hexade upole (cid:29)ow for di(cid:27)erent hadrons . . . . . . . . 47 IV.10 Ellipti and hexade upole (cid:29)ow for light quarks . . . . . . . . . . . . . . 47 IV.11 Comparison of the freeze-out e entri ity . . . . . . . . . . . . . . . . . 48 r (dN) τ ρ λ IV.12 Therelativedeviations oftheinvariantyieldswith − orrelations 50 ∆ (v ) τ ρ λ 2 IV.13 The deviations of the ellipti (cid:29)ow with − orrelations . . . . 50 √s = IV.14 Transverse momentum spe tra of hadrons for Au+Au ollisions at 200 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 IV.15 Charged hadron yield for di(cid:27)erent radial pro(cid:28)les of the transverse rapidity 53 IV.16 Mean transverse momentum and velo ity of hadrons as a fun tion of the hadron mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 P T IV.17 Invariant yield ratios for di(cid:27)erent hadrons as a fun tion of . . . . . . 55 v ε n IV.18 Mean (cid:29)ow h i as a fun tion of the e entri ity . . . . . . . . . . . . . 58 v n IV.19 Mean (cid:29)ow h i as a fun tion of the e entri ity from an ellipti freeze-out 58 IV.20 The relative (cid:29)ow (cid:29)u tuations for a ir ular freeze-out . . . . . . . . . . 60 IV.21 The relative (cid:29)ow (cid:29)u tuations for an ellipti freeze-out . . . . . . . . . . 61 v /(v )2 4 2 IV.22 Comparison of the ratio from an ellipsoidal freeze-out for di(cid:27)er- ent strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 v /(v )2 4 2 IV.23 The (cid:29)ow ratio for an ellipsoidal freeze-out ompared to STAR τ ρ and PHENIX data with di(cid:27)erent − orrelations . . . . . . . . . . . . 63 v /(v )2 4 2 IV.24 The (cid:29)ow ratio for an ellipsoidal freeze-out ompared to STAR and PHENIX data with di(cid:27)erent radial pro(cid:28)les of the transverse rapidity 65 p c = 0.0 T e IV.25 Ellipti (cid:29)ow of harged hadrons as a fun tion of for and c = 0.73 e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 p c = 0.73 T e IV.26 Ellipti (cid:29)ow of identi(cid:28)ed hadrons as a fun tion of with and λ = 0.3 − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 p c = 0.0 λ = 0 T e IV.27 Ellipti (cid:29)ow as a fun tion of with and . . . . . . . . . 68 p c = 0.73 λ = 0.3 T e IV.28 Hexade upole (cid:29)ow as a fun tion of with and − for di(cid:27)erent hadrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 v 2 IV.29 Ellipti (cid:29)ow of deuterons from 6 re ombining quarks or s aled proton 70 J/ψ IV.30 Estimating the harm (cid:29)ow from the ellipti (cid:29)ow of . . . . . . . . . 71 D v 0 2 IV.31 Ele tron ellipti (cid:29)ow data from heavy (cid:29)avor de ay omapared to 72 IV.32 Ellipti (cid:29)ow of heavy mesons with harm and bottom quark ontent at RHIC and LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 IV.33 Mean ellipti (cid:29)ow for harged hadrons as a fun tion of the entrality . . 74 p c = 0.73 λ = 0.3 T e IV.34 Hexade upole (cid:29)ow as a fun tion of with and − for di(cid:27)erent entralities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 v v √s= 100 2 4 IV.35 Comparison of h i and h i for di(cid:27)erent hadrons from GeV to 10 TeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 v 2 IV.36 Comparison of h i for harged hadrons as a fun tion of enter of mass energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 v p 2 T IV.37 Ellipti (cid:29)ow of harged hadrons for a (cid:28)xed as a fun tion of enter of mass energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 v 4 IV.38 Comparison of h i for harged hadrons as a fun tion of enter of mass energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 v / v 2 4 2 IV.39 The ratio h i h i for harged hadrons as a fun tion of enter of mass energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 List of Tables v (ε) = aε+bε2 n IV.1 Fit values for the fun tion h i . . . . . . . . . . . . . . . 57

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.