ebook img

A note on the "logarithmic-W_3" octuplet algebra and its Nichols algebra PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A note on the "logarithmic-W_3" octuplet algebra and its Nichols algebra

A NOTE ON THE “LOGARITHMIC-W ” OCTUPLET ALGEBRA AND ITS 3 NICHOLS ALGEBRA AMSEMIKHATOV 3 1 ABSTRACT. WedescribeaNichols-algebra-motivatedconstructionofanoctupletchiral 0 algebrathat is a “W -counterpart”of the tripletalgebra of p,1 logarithmicmodelsof 3 2 p q two-dimensionalconformalfieldtheory. n a J 0 1 1. INTRODUCTION ] A Logarithmicmodelsof two-dimensionalconformal field theory can be defined as cen- Q tralizers ofNicholsalgebras [1, 2]. Forthis,thegenerators F of agivenNichols algebra i h. B X with diagonal braiding [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] are to be t p q a realized as m F ea i.j , 1 i rank q , i [ “ ď ď ” ¿ 1 wherej z isaq -pletofscalarfieldsanda Cq arechosensoastoreproducethegiven i v p q P braidingcoefficients q in 7 i,j 2 Y :F F q F F, 1 i, j q . 2 i j i,j j i b ÞÑ b ď ď 2 1. Thecoefficientsarestandardlyarrangedintoabraidingmatrixpqi,jq11ďijďrraannkk. Therelation 0 between the braiding matrix and the screening momenta is postulateďdď[2] in the form of 3 1 equations v: q eipa j.a j, q q e2ipa j.a k j,j j,k k,j i “ “ X and thelogical-“or”conditions r a a a .a 2a .a , 1 a a .a 2 i,j i i i j i,j i i “ p ´ q “ imposedforeach pairi j andinvolvingthŽeCartanmatrix ai,j associatedwiththegiven ‰ braidingmatrix(see, e.g., [18]and thereferences therein). In this note, we describe some details related to the construction of the octuplet alge- bra [2] that can be considered a “logarithmicextension”of the W algebra [19] similarly 3 tohowthetripletalgebra[21,22,23]isa“logarithmicextension”oftheVirasoroalgebra. The starting point is a particular item in Heckenberger’s list of rank-2 Nichols algebras withdiagonalbraiding(which isitem 5.7(1)in[20])—thebraidingmatrix q2 q 1 (1.1) q ´ , ij “ q 1 q2 ˜ ´ ¸ 2 SEMIKHATOV where q2 is aprimitive2pth rootofunity. Wechoose ip (1.2) q ep “ with p 2,3,.... This choice leads to p,1 -type logarithmic CFT models [21, 22, 23, “ p q ip p1 24, 25, 26, 27], in contrast to p,p models that follow if q is chosen as e p instead. 1 p q Themainexpectationassociatedwith p,1 -typemodelsisthattheirrepresentationcate- p q goriesare“verycloselyrelated”[25,28,29]toanappropriaterepresentationcategoryon the algebraic side, which in the braided case is some category of Yetter–Drinfeld B X - p q modules(cf.[30]). Inthispaper,wethereforeproceedalongtworoutes: (i)describingthe structureoftheB X algebraassociatedwith(1.1)(solelywiththechoicein(1.2))andits p q suitable Yetter–Drinfeld modules, and (ii) discussing some properties of the octuplet al- gebrathatcentralizesthisB X . Noneofthetwodirectionsispursuedtothepointwhere p q they actually meet (which would mean constructing a functor), but the results presented herehopefullybringus somewhatclosertothat point. 2. THE NICHOLS ALGEBRA 2.1. Presentation for B X . We first recall the presentation of the relevant Nichols al- p q gebra,asaquotientofthetensoralgebra. Ourstartingpointisatwo-dimensionalbraided vectorspaceX withthepreferred basis F ,F andtheabovebraidingmatrixinthisbasis. 1 2 TheNicholsalgebra B X isthequotientby agraded ideal I[16, 20], p q (2.1) B X T X F , F ,F , F , F ,F , Fp, F ,F p, Fp , dimB X p3, p q“ p q{ r 1 r 1 2ss r 2 r 2 1ss 1 r 2 1s 2 p q“ If p 2, the double-b`racket generators of the ideal are absent. The˘brackets here denote “ q-commutators determined by the braiding matrix: F ,F F F q 1F F , F ,F 1 2 1 2 ´ 2 1 2 1 r s“ ´ r s“ F F q 1F F , and so on by multiplicativity of the “q”-factor, whence the two double 2 1 ´ 1 2 ´ commutatorsin theideal areexplicitlygivenby F , F ,F F2F q q 1 F F F F F2, 1 1 2 1 2 ´ 1 2 1 2 1 r r ss“ ´p ` q ` F , F ,F F2F q q 1 F F F F F2. 2 2 1 2 1 ´ 2 1 2 1 2 r r ss“ ´p ` q ` A PBWbasisinB X isgivenbyFrFtFs, 0 r,s,t p 1 [20], where 1 3 2 p q ď ď ´ F F ,F . 3 2 1 “r s Thedouble-bracketrelationsintheidealcanalsoberewrittenasF F qF F andF F 2 3 3 2 3 1 “ “ qF F . 1 3 Multiplicationin B X T X I is the one induced by “concatenation” in the tensor p q“ p q{ algebra, X m X n X m n , x ,...,x y ,...,y x ,...,x ,y ,...,y . It b b bp ` q 1 m 1 n 1 m 1 n b Ñ p qbp q ÞÑ p q is then relatively straightforward to show that the multiplication table of the PBW basis elementsis ANOTEONTHE“LOGARITHMIC-W ”OCTUPLETALGEBRAANDITSNICHOLSALGEBRA 3 3 r t s r t s (2.2) F 1F 1F 1 F 2F 2F 2 1 3 2 1 3 2 p qp q“ min s ,r 1 2 p qqt1pr2´iq`t2ps1´iq´s1r2`ip1`iq{2xiy! si1 ri2 F1r1`r2´iF3t1`t2`iF2s1`s2´i. i 0 B FB F ÿ“ Comultiplication is by “deshuffling,” determined by the defining property of a braided Hopfalgebraand thefact that F and F are primitive. 1 2 2.2. B X as a subalgebra in T X . For any Nichols algebra B X , the graded ideal I p q p q p q suchthatB X T X Iisknowntobethekernelofthetotalbraidedsymmetrizermap p q“ p q{ in each grade, S : X n X n. Mapping by S in each grade therefore results in an n b b n Ñ equivalentdescriptionof B X withmultiplicationgivenbytheshuffleproduct p q : x ,...,x y ,...,y X x ,...,x ,y ,...,y , 1 m 1 n m,n 1 m 1 n ˚ p qbp qÞÑ p q and comultiplication by deconcatenation (see [1] for the definition of shuffles and the braided symmetrizer; the only notational difference is that is not used for the shuffle ˚ productthere). We let B r,t,s be the image of FrFtFs under the map by the braided symmetrizer, or 1 3 2 p q moreprecisely, 1 Bpr,t,sq“ r ! s ! t ! 1 q2 tSr`2t`spF1rF3tF2sq. x y x y x y p ´ q In particular, B 1,0,0 F1, B 2,0,0 F1F1, p q“ p q“ B 0,0,1 F2, B 1,0,1 F1F2 q´1F2F1, p q“ p q“ ` B 0,0,2 F2F2, p q“ B 0,1,0 q´2F2F1. p q“´ 2.2.1. Theshuffleproduct of B r1,t1,s1 and B r2,t2,s2 followsfrom (2.2): p q p q (2.3) B r1,t1,s1 B r2,t2,s2 p q˚ p q“ min s ,r p 1 2q r1`r2´i s1`s2´i p1´q2qixt1`t2`iy! qt1pr2´iq`t2ps1´iq´s1r2`ipi`1q{2 r s t ! t ! i ! i 0 B 1 FB 2 F x1y x2y x y ÿ“ B r1 r2 i,t1 t2 i,s1 s2 i . ˆ p ` ´ ` ` ` ´ q and thecoproduct is r s t k (2.4) D :B r,t,s 1 iq´ipi`3q{2`pk´m´2iqj`mpt´i´kq p qÞÑ p´ q j 0m 0k 0i 0 ÿ“ ÿ“ ÿ“ ÿ“ i j i m ` ` i !B r j,k i,i m B j i,t k,s m , ˆ i i x y p ´ ´ ` qb p ` ´ ´ q B FB F 4 SEMIKHATOV whereterms withthelowestgrades inthefirst tensorfactorare 1 B r,t,s F1 B r 1,t,s “ b p q` b p ´ q qt´rF2 B r,t,s 1 q´r´2 r 1 F2 B r 1,t 1,s ` b p ´ q´ x ` y b p ` ´ q ... ` (thedotsstandforterms B r1,t1,s1 B r2,t2,s2 withr1 2t1 s1 2). p qb p q ` ` ě 2.2.2. Remark. Although this is obvious, we note explicitly that the “Serre relations”— thedoubleq-commutatorsintheideal—areresolvedintermsoftheshuffleproductinthe sensethattherelations F F F q q 1 F F F F F F 0, 1 1 2 ´ 1 2 1 2 1 1 ˚ ˚ ´p ` q ˚ ˚ ` ˚ ˚ “ F F F q q 1 F F F F F F 0 2 2 1 ´ 2 1 2 1 2 2 ˚ ˚ ´p ` q ˚ ˚ ` ˚ ˚ “ holdidenticallyfortheshuffleproductdefined by thebraidingmatrix(1.1). 2.2.3. TheactionoftheantipodeonthePBWbasiselementsisdefinedbytheformulas S B r,0,0 1 rqrpr´1qB r,0,0 , p p qq“p´ q p q t S B 0,t,0 1 tq21ipi´1q´pi`3qt`t2 i !B i,t i,i , p p qq“ p´ q x y p ´ q i 0 ÿ“ S B 0,0,s 1 sqsps´1qB 0,0,s p p qq“p´ q p q and bythefact that S isa braidedantiautomorphism: S B r,t,s qrt´rs`tsS B 0,0,s S B 0,t,0 S B r,0,0 . p p qq“ p p qq˚ p p qq˚ p p qq 2.3. VertexoperatorsandYetter–DrinfeldB X modules. MultivertexB X module p q p q comodules, which are Yetter–Drinfeld modules, were defined in [1]. We here realize simpleYetter–Drinfeldmodulesofour B X in termsofone-vertexmodules. p q 2.3.1. TheY spaces. LetY n1,n2 be a one-dimensional vector space with basisV n1,n2 t u t u and braiding y : B X Y n1,n2 Y n1,n2 B X and Y n1,n2 B X B X t u t u t u p qb Ñ b p q b p q Ñ p qb Y n1,n2 defined by t u y F V n1,n2 q1 niV n1,n2 F, i t u ´ t u i p b q“ b y V n1,n2 F q1 niF V n1,n2 , t u i ´ i t u p b q“ b i 1,2. Every space B X Vtn11,n12u B X Vtn21,n22u ... VtnN1,nN2u is a Yetter– “ p qb b p qb b b j Drinfeld B X module. Taking the a to be generic leads to continuum families of such i p q modules,leavinguswithnochanceofanicecorrespondencewithanytypeof“reasonably j rational”CFTmodel. Thechoiceofthepossiblea valuesisgovernedbytherequirement i that all of them (and the braided vector space X itself) be objects of a suitable HYD H ANOTEONTHE“LOGARITHMIC-W ”OCTUPLETALGEBRAANDITSNICHOLSALGEBRA 5 3 category of Yetter–Drinfeld modules over a nonbraided Hopf algebra H. In the case of diagonal braiding, more specifically, H kG for an Abelian group G , which can then be “ j considered the origin of the appropriate discreteness in the a values. We do not pursue i j thislinein thispaper, andsimplyassumethatthe a takeintegervalues. i Weconsiderone-vertexmodules B X V n1,n2 and forbrevitywrite t u p qb B r,t,s tn1,n2u B r,t,s Vtn1,n2u B X Ytn1,n2u, p q “ p qb P p qb and, inparticular, Fitn1,n2u Fi Vtn1,n2u B X Ytn1,n2u “ b P p qb (but B 0,0,0 tn1,n2u 1 Vtn1,n2u isnormallywrittenasVtn1,n2u). p q “ b 2.3.2. Left adjoint action. The formulas for the product, coproduct, and antipode in 2.2.1–2.2.3allowcalculatingtheleftadjointactionoftheB X generatorsonone-vertex p q modules: F1§B r,t,s tn1,n2u r 1 1 q2pr´s`t`1´n1q B r 1,t,s tn1,n2u p q “x ` yp ´ q p ` q q2r´2s`t´2n1`3 t 1 1 q2 B r,t 1,s 1 tn1,n2u ´ x ` yp ´ q p ` ´ q and F2§B r,t,s tn1,n2u q1´r t 1 1 q2 B r 1,t 1,s tn1,n2u p q “ x ` yp ´ q p ´ ` q qt´r s 1 1 q2ps`1´n2q B r,t,s 1 tn1,n2u. ` x ` yp ´ q p ` q Theseformulasdependonn andn onlythrough a modp . TheB X coactionisgiven 1 2 i p q p q byliterallyapplyingformula(2.4)toB r,t,s Vtn1,n2u(andisentirelyindependentofai). p qb 2.3.3. SimpleYetter–Drinfeldmodules. AsimpleYetter–DrinfeldB X -moduleY n ,n p q 1 2 isgenerated fromV n1,n2 undertheaction ofB X ;itsdimensionis givenby t u p q d n ,n , n n p, 1 2 1 2 d p,n ,n p q ` ď 1 2 p q“#d n1,n2 d p n1,p n2 , n1 n2 p 1, p q´ p ´ ´ q ` ě ` where d n ,n 1n n n n and p 1 2q“ 2 1 2p 1` 2q p, xmod p 0, x p q“ “#xmod p, otherwise. 3. THE OCTUPLET ALGEBRA CENTRALIZING B X p q WenextdiscussaCFT constructionrelated toour B X . p q 6 SEMIKHATOV 3.1. Screenings andtheirzero-momentum centralizer. WeidentifytheB X genera- p q torswithtwo screenings j j (3.1) Fa F1 e a , Fb F2 e b , “ “ “ “ ¿ ¿ where j a z and j b z are two scalarfields whose OPEs are defined in accordance with p q p q thebraidingmatrixas follows: 2 1 j a z j a w log z w , j a z j b w log z w , p q p q“ p p ´ q p q p q“´p p ´ q 2 j b z j b w log z w . p q p q“ p p ´ q It follows from the formulas in [2] that the centralizer (“kernel”) of screenings (3.1) containsaVirasoro algebrawiththecentral charge 24 2 3p 4 4p 3 (3.2) c 50 24p p ´ qp ´ q. “ ´ p ´ “´ p ThisVirasoro algebraisrepresented by theenergy–momentumtensor p p p T z j a j a z j a j b z j b j b z p 1 2j a z p 1 2j b z . p q“ 3B B p q` 3B B p q` 3B B p q´p ´ qB p q´p ´ qB p q In additiontotheVirasoro algebra,thekernelofthescreenings containsthedimension-3 Virasoro primaryfield (omittingtheconventional z argumentsoffields) p q 3 3 (3.3) W z j a j a j a j a j a j b j a j b j b j b j b j b p q“B B B `2B B B ´2B B B ´B B B 9 p 1 9 p 1 9 p 1 9 p 1 2j j 2j j 2j j 2j j p ´ q a a p ´ q a b p ´ q b a p ´ q b b ´ 2p B B ´ 4p B B ` 4p B B ` 2p B B 9 p 1 2 9 p 1 2 p ´ q 3j a p ´ q 3j b . ` 4p2 B ´ 4p2 B Theoperatorproductofthisfield withitselfisgivenby 81 3p 5 3p 4 4p 3 5p 3 1 243 3p 5 5p 3 T w W z W w p ´ qp ´ qp ´ qp ´ q p ´ qp ´ q p q p q p q“ 4p5 z w 6 ´4p4 z w 4 p ´ q p ´ q 243 3p 5 5p 3 T w 243 8pTT w 9 p 1 2 2T w p ´ qp ´ qB p q p q´ p ´ q B p q ´8p4 z w 3 `16p4 z w 2 p ´ q p ´ q 243 4p T T w p 1 2 3T w pB q p q´p ´ q B p q, `8p4 z w ´ where TT w is the normal-ordered product T w T w (and similarly for T T w ). p q p q p q pB q p q ThisOPE defines theW algebra[19] (alsosee[31]). 3 In an equivalent description, the W algebra relations for the modes introduced as 3 T z L z n 2 andW z W z n 3 are n Z n ´ ´ n Z n ´ ´ p q“ p q“ P P 1 24 L ,Lř m n L 50 ř 24p m 1 m m 1 d , m n m n m n,0 r s“p ´ q ` `12p ´ p ´ qp ´ q p ` q ` L ,W 2m n W , m n m n r s“p ´ q ` 81 3p 5 5p 3 m n 3 m n 2 m 2 n 2 rWm,Wns“´ p ´8pq4p ´ qpm´nq p ` ` q5p ` ` q´p ` q2p ` q Lm`n ´ ¯ ANOTEONTHE“LOGARITHMIC-W ”OCTUPLETALGEBRAANDITSNICHOLSALGEBRA 7 3 243 27 3p 5 3p 4 4p 3 5p 3 `4p3pm´nqL m`n` p ´ qp 1´60qpp5 ´ qp ´ qmpm2´1qpm2´4qd m`n,0, where 3 L L L L L m 3 m 2 L . m n m n m n n m “ ´ ` ´ ´10p ` qp ` q n 2 n 1 ďÿ´ ěÿ´ 3.2. Long screenings. TheW algebraisalso centralized bytwo“long”screenings 3 (3.4) Ea e´pj a and Eb e´pj b . “ “ ¿ ¿ Because F,E 0, i j r s“ the long screenings act on the kernel of the Fa and Fb , and are therefore a useful tool in studyingthat kernel. j a j 3.3. Remark. We note that, generally, given the screenings F e i e i , i i ¨ 1,...,q ,theVirasoro dimensionofa vertex em .j z with m q c“a is “ “ p q “ i 1 i űi ű “ q q a .a 1 ř D c c 1 i i cc a .a . i i j i j p q“ ´ 2 `2 i 1 i,j 1 ÿ“ ` ˘ ÿ“ We list the generators of the ideal in (2.1) togetherwith the vertex operators that naively (by momentumcounting)correspondtothem,and withtheVirasoro dimensionsofthese vertices: F , F ,F , F , F ,F , Fp, F ,F p, Fp, r 1 r 1 2ss r 2 r 2 1ss 1 r 1 2s 2 (3.5) e2j a z j b z , ej a z 2j b z , epj a z , epj a z pj b z , epj b z , p q` p q p q` p q p q p q` p q p q 3, 3, 2p 1, 3p 2, 2p 1. ´ ´ ´ 3.4. The octuplet algebra. Thefield W z epj a z pj b z , p q` p q p q“ whichisthetop-dimensionfieldin(3.5),isinthekernelofFa andFb andisaW3-primary field of dimensionD 3p 2 and theW eigenvaluezero. To describe how it is mapped 0 “ ´ by thelongscreenings, weneed areminderon W singularvectors. 3 3.4.1. Singular vectors in W Verma modules. We recall from [32] (also see [31] and 3 thereferences therein) that highest-weightvectors of the W algebra can be conveniently 3 parameterized by x,y suchthat p q L x,y 0, m 1, m “ ě Wmˇx,yD 0, m 1, ˇ “ ě L0ˇˇx,yD x2`y2`xy pp´1q2 x,y , “ 3 ´ p ´ ¯ ˇ D ˇ D ˇ ˇ 8 SEMIKHATOV 1 W x,y x y 2x y x 2y x,y . 0 “ 2p3 2p ´ qp ` qp ` q { The two numbers x and yˇ areDdefined not uniquely but up toˇa WDeyl transformation; the ˇ ˇ Weyl group orbit of x,y also contains x,x y , x y, y , y, x y , x y,x , p q . p´ ` q p ` ´ q p ´ ´ q p´ ´ q and y, x . We write V z x,y for any field state V z that satisfies the above p´ ´ q p q “ { p q conditions. ˇ D ˇ In what follows, we use the conditions for the existence of singular vectors in Verma modulesoftheW algebra[33,34,32]. Wheneverastatecanberepresentedas x,y with 3 c x a?p forintegera and c such that ac 0, thereis asingularvectoron thelevel “ ´?p ą ˇ D ˇ acbuiltonthatstate. Thesingularvectorhasthehighest-weightparameters x ,y x 1 1 p q“p ´ d 2a?p,y a?p . Similarly, if y b?p with bd 0, then a singularvectoroccurs ` q “ ´ ?p ą on thelevelbd andhas thehighest-weightparameters x ,y x b?p,y 2b?p . 2 2 p q“p ` ´ q 3.4.2. It followsthat W z epj a z pj b z . 2?p 1 ,2?p 1 , p q` p q p q“ “ ´?p ´?p andhencethecorrespondingVerma-modulesˇtatehastwosingularveDctorsatlevel2. Both ˇ of them vanish in our free-field realization. Of the two fields Ea W z and Eb W z , we p q p q concentrateon thesecond; itlandsinthemodulegenerated from epj a z . 3?p 1 , 1 . p q “ ´?p ´?p Thecorrespondinghighest-weightstateiˇntheVermamodDulehassingularvectorsatlevels ˇ 3 and p 1. The first of thesevanishesin the free-boson realization, but thesecond does ´ not,yieldingjustthefield W z E W z ,as weshowinFig. 1. Wenotethat b b p q“ p q Wb z Prbp´1s j z epj a pzq p q“ pB p qq with a differential polynomials in j a z , j b z in front of the exponential; here and B p q B p q hereafter, weindicatethedegree d ofadifferentialpolynomialas P d . r s Totallysimilarly, Wa z Ea W z Parp´1s j z epj b pzq p q“ p q“ pB p qq isa descendantof epj b z . 1 ,3?p 1 . p q “ ´?p ´?p ˇ D The maps of Wa z by Eb and of Wb z ˇby Ea are differential polynomials (not in- p q p q volving exponentials). They are not descendants of the unit operator, however. We have . 1 ?p 1 ,?p 1 , which implies singular vectors at levels 1, 1, 4, 2p 1, and “ ´ ?p ´ ?p ´ 2p 1. All of these vanish in the free-field realization. In each of the grades where a le´vˇˇel- 2p 1 singularDvector vanishes, another state is produced as Ea epj a pzq and p ´ q p q e pj a pj b ´ ´ ˝ A N O T E O 1 N ˝ p 1 T ´ H e pj b E ´ ˝ Ea ‚ ‚ “L Eb OG 2 A R I T 4 ˆˆˆˆˆˆ ˆˆˆ ˆˆˆ H M I C ˆˆˆ Eb 2p 2 -W 2p 1 2p 2 ´ 3” ´ Eb ´ O epj a CT ˝ Ea ˝ˆˆˆ ˝ˆˆˆ Eb ˝ˆˆˆ ˝ˆˆˆ Ea ˝ˆˆˆ ˝ˆˆˆ UP Eb Ea Eb LE 3 T A p 1 L ˆˆˆ ´ G p´1 p´1 p´1 p´1 EBR A W Eb Wb Wab Wba Wbab Waabb A ‚ ‚ Ea ‚ ‚ Eb ‚ ‚ N D Eb Ea I Eb Eb TS N I C H FIGURE 1. Maps by the long screenings Ea and Eb . Crosses and downward arrows leading tothem show W3 singular vectors that vanish in OL S the free-boson realization. Bullets (and downward arrows) show nonvanishing states in the same grades; the relative levels of singular vectors A are indicated at the arrows. An open circle superimposed with a cross shows a vanishing W singular vector and a (W -primary) state in the LG 3 3 E same grade, but not in the same W -module (and downward arrows drawn from such show singular vectors built on those primary states). B 3 R Twomoremodules—those with epj b ande´pj a atthetop—are not shownhere; theirs˝tˆˆˆructure repeats that ofthe“epj a ”and“e´pj b ”modules A witha b . Dottedarrowsshowthemapsby Ea andEb fromthemissingmodules. Ø 9 10 SEMIKHATOV Eb epj b pzq . This is shown in Fig. 1 with the symbols (“a state superimposed with a p q ˝ˆ vanishing singular vector”). Next, Ea epj a pzq and Eb epj b pzq have singular-vector de- p q p q scendantsontherelativelevel p 1,whichareofcoursetherespectiveimagesof Wb z ´ p q and Wa z underEa and Eb , p q Wab z Ea Wb z Prab3p´2s j z , Wba z Eb Wa z Prba3p´2s j z . p q“ p q“ pB p qq p q“ p q“ pB p qq Furthermapsbythelongscreeningsdonotproduce W -descendantsofthecorrespond- 3 ingexponentialseither. WeconsiderE W z andE W z . Inthemoduleassociated b ab b ba p q p q with e pj b z . 2?p 1 , ?p 1 , ´ p q “ ´?p ´ ´?p two singular vectors at level 2 and ˇtwo at level 2p 2 vaDnish; located at the grades of the last two are Eb Ea epj a pzq (theˇ maps shown in´Fig. 1) and Eb Eb epj b pzq.1 Now, Eb Ea epj a pzq and Eb Eb epj b pzq have a level- p 1 singular-vector descendant each. In p ´ q our free-field realization, these two singular vectors evaluate the same up to a nonzero overallfactor, thusproducinga W -primaryfield 3 Wbab z Eb Wab z Pbrab3p´3s j z e´pj b pzq. p q“ p q“ pB p qq Everythingwiththereplacement a b applies tothefield Ø Waba z Ea Wba z Parba3p´3s j z e´pj a pzq. p q“ p q“ pB p qq Finally,mappingbythelongscreenings onceagaingivesafield Waabb z Ea Wbab z Praabb4p´4s j z e´pj a pzq´pj b pzq p q“ p q“ pB p qq (which is also Eb Waba z up to a factor), which is not in the module associated with p q e pj a z pj b z ,however. IntheVermamoduleassociatedwiththehighest-weightvector ´ p q´ p q e pj a z pj b z . 1 , 1 , ´ p q´ p q “ ´?p ´?p there are two singular vectors at level p 1, bˇoth of whichDare nonvanishing in the free- field realization and are in fact the image´s of eˇ pj b z (and e pj a z ; see Fig. 1). Each of ´ p q ´ p q thesesingularvectorstherefore has two level- 2p 2 singularvectors,which are infact p ´ q the same pair of singular vectors. These two next-generation singular vectors vanish in 1We illustrate the use of 3.4.1. In the Verma module with the highest-weightvector x,y 2?p ?1p,´?p´?1p associatedwithe´pj b pzq,oneofthelevel-p2p´2qsingularvectorsexistˇsduDe“toˇtherep´- resentationy“Dp?´p1´2?p,andthereforethesingularvectorhasthehighest-weightparamˇeterspx2ˇ,y2q“ p´?1p,3?p´?1pq, i.e., those of epj b pzq. The otherlevel-p2p´2qsingularvectoris seen immediatelyif weWeyl-reflectthehighest-weightparameterstopx˜,y˜q“p´x,x`yq. Wethenhavey˜“ 2p?p´p1q´?p,and hencethesingularvectorhastheparameters 3?p 1 ,3?p 2 . AfterthesameWeylreflection,the p´ `?p ´?pq parametersp3?p´?1p,´?1pqcorrespondtoepj a pzq.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.