Zootaxa 4184 (2): 285–315 ISSN 1175-5326 (print edition) Article ZOOTAXA http://www.mapress.com/j/zt/ Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4184.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:8A38E47C-5F24-4B2A-A7E8-7D99592252DD A new species of Australian frog (Myobatrachidae: Uperoleia) from the New South Wales mid-north coast sandplains SIMON CLULOW1,5, MARION ANSTIS1, J. SCOTT KEOGH2 & RENEE A. CATULLO2,3,4 1 School of Environmental and Life Sciences, University of Newcastle, NSW 2308 Australia 2 Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, ACT 0200, Australia 3 Biological Sciences, Macquarie University, NSW 2109 Australia 4School of Science & Health, Western Sydney University, NSW 2751 Australia 5Corresponding author. E-mail: [email protected] Abstract The discovery of new vertebrate species in developed countries is still occurring at surprising rates for some taxonomic groups, especially the amphibians and reptiles. While this most often occurs in under-explored areas, it occasionally still happens in well-inhabited regions. We report such a case with the discovery and description of U. mahonyi sp. nov., a new species of frog from a highly populated region of New South Wales, Australia. We provide details of its morphology, calls, embryos and tadpoles, and phylogenetic relationships to other species of eastern Uperoleia. We also provide the results of targeted surveys to establish its distribution and provide observations of its habitat associations. As a consequence of these surveys, we comment on the likely restricted nature of the species’ distribution and habitat, and place this in the context of a preliminary assessment of its putative conservation status, which should be assessed for listing under the IUCN’s red list. We note this species, which is morphologically distinct, has gone unnoticed for many decades despite numerous eco- logical surveys for local development applications. Key words: Amphibia, Anura, cryptic species, toadlet, Uperoleia mahonyi sp. nov. Introduction A surprising proportion of species may remain undiscovered for extended periods, even when the clade has long been recognised, sometimes for more than a century. Discrete species often remain unrecognised for a common set of reasons. A case in point is the genus Uperoleia Gray, 1841; a genus of small, fossorial frogs endemic to Australia and New Guinea (Tyler & Davies 1984). Commonly referred to as ‘toadlets’, the genus comprises 27 species, making it the largest myobatrachid genus. Much of this taxonomic diversity has been recognised only recently. Only six species of Uperoleia were described prior to 1981 (Tyler et al. 1981a) with the majority subsequently described in the early to mid-1980s (Tyler et al. 1981a, 1981b, 1981c; Davies et al. 1985; Davies & Littlejohn 1986; Davies et al. 1986). More recently, advanced molecular genetic and morphological work has resulted in the description of a further four species in the past decade and another put in to synonomy (Young et al. 2005; Doughty & Roberts 2008; Catullo et al. 2011; Catullo & Keogh 2014; Catullo et al. 2014a). These molecular studies identified genetic and acoustic divergence in the absence of morphological divergence, supporting the hypothesis that the genus contains a number of morphologically cryptic species. There are several reasons for so many species within this genus remaining cryptic; not least being that the morphology is highly conserved among these species, making many superficially similar (Tyler et al. 1981a; Cogger 2014). They are also highly secretive; individuals remain well camouflaged and hidden, often found only by following the male advertisement call, limiting the ability for morphological comparisons in the field. Calls between closely related species can sound superficially similar to the human ear, often requiring spectral analyses to confirm species identification (Catullo et al. 2014b). The cryptic morphology and secretive nature of the group suggests that new species of Uperoleia could Accepted by M. Vences: 26 Sept. 2016; published: 4 Nov. 2016 285 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 potentially occur in well-inhabited regions, where currently recognised Uperoleia species can be common. We here present the surprising case of a new, previously overlooked, species from the densely inhabited eastern seaboard of Australia. The new species occurs in regions subject to frequent surveys for environmental assessments, which failed to recognise this superficially similar, but morphologically and acoustically distinct species. In March 2007, specimens of an undescribed species of Uperoleia were discovered in a coastal sandplain swamp at Oyster Cove, NSW, Australia (-32.7394, 151.9557) by one of the authors (SC). It was immediately apparent that these specimens did not conform to any species of Uperoleia described at the time based upon the markings and, in particular, ventral patterns, and subsequent analyses of the morphology and calls of several of the specimens confirmed these to be a previously undescribed species. Genetic tests carried out at the time using ND2 mitochondrial DNA (mtDNA) sequencing provided further confirmation that the specimens belonged to an undescribed species. Herein, we describe Uperoleia mahonyi sp. nov. and provide details of its morphology, calls, embryos and tadpoles, and phylogenetic relationships to other species of eastern Uperoleia. We also provide the results of targeted surveys to establish its distribution on the NSW mid-north coast and provide observations of its habitat associations. As a consequence of these surveys, we comment on the likely restricted nature of the species’ distribution and habitat and place this in the context of a preliminary assessment of its conservation status. Methods External morphology. Specimens of U. mahonyi sp. nov. were collected, along with a number of specimens of other eastern Uperoleia, from various localities (Appendix 1). Individuals were examined for external morphology and colouration to record traits that might be useful in distinguishing the various species, and to confirm the level of variation within and between species. In particular, inspections focussed upon the ventral pigmentation, patterning and colouration; dorsal colouration and patterning; the presence and absence of glands (in particular the parotoid, inguinal and coccygeal glands); and the colour and location of groin and femoral colour patches (present in most Uperoleia). The presence or absence of maxillary teeth was determined externally for all U. mahonyi sp. nov. specimens by the methods of Davies & Littlejohn (1986), and were confirmed by using fine forceps to check for the presence of serrations. The presence or absence of vomerine teeth was also checked. Morphometrics. Morphological measurements were obtained for 11 male and 3 female specimens. Details and abbreviations for measurements taken are provided in Table 1. Tympanum diameter was not recorded due to the presence of paratoid glands that cover the tympana. Measurements were taken using digital callipers (accurate to 0.1 mm) or using an eyepiece micrometre on a dissecting microscope. Results are expressed in mm as mean ± standard deviation for the two sexes separately. Call recording and analysis. Advertisement calls of 9 specimens were recorded in the field on a Marantz PMD660 Professional Solid State Recorder using a RØDE NTG-2 directional condenser microphone at a distance of approximately 30 cm. The air temperature was measured at the recording site. The location of the recordings and numbers of individuals are shown in Table 2. For each call recorded, five call properties were analysed: pulse rate (s-1); dominant frequency (kHz); pulses per call; calls per minute and call duration (ms) using Raven Pro v.1.3 software. For each calling male, between three and thirteen calls were recorded. These were averaged and used to calculate means with ranges given in parentheses. These call properties were compared to those obtained from other eastern Uperoleia that might occur in sympatry or are close relatives with U. mahonyi sp. nov. as per the phylogeny. Phylogenetic analysis. We determined the set of closest relatives of the new species by building a mitochondrial phylogeny incorporating the new species, and all other Uperoleia species with available mitochondrial data (26 additional species, not shown). Based on that analysis, we completed the below analyses incorporating specimens of U. mahonyi sp. nov., and multiple specimens from all described Uperoleia species in New South Wales (NSW). Using all NSW species incorporated all the closest relatives of U. mahonyi sp. nov. into the analysis, as well as U. rugosa, a more distant relative also present in NSW (Appendix 1, and see Catullo & Keogh 2014). DNA extraction, amplification, and sequencing followed the protocols as per Catullo and Keogh (2014). In addition to the five nuclear genes (A2AB, BDNF, BMP2, NTF3, and RAG1) and the 16S rRNA 286 · Zootaxa 4184 (2) © 2016 Magnolia Press CLULOW ET AL. mitochondrial gene used in that study, we also sequenced the mitochondrial ND2 gene using primers and PCR protocols from Catullo et al. (2011). TABLE 1. Description and abbreviation of morphometric measurements taken from (A) adult and (B) tadpoles of Uperoleia mahonyi sp. nov. Tadpole measurements follow Anstis (2013). Abbreviation Description (A) SVL snout-vent length TibL length of tibia E eye diameter from anterior to posterior corner of the eye E-N eye to naris distance from the anterior corner of the eye to the outer edge of the nostril IN inter-narial span, distance from the two inner-edges of the nares HW head width measured at the widest point of the jaws CP femoral colour patch diameter measured horizontally due to irregularity in shape CP-K femoral colour patch to knee distance measured from outer edge of colour patch to knee joint CP-V femoral colour patch to vent distance measured from inner edge of colour patch to vent (B) TL total length from the tip of the snout to the tip of the tail BL body length from the tip of the snout to the body-tail junction BW maximum body width in dorsal view BD maximum body depth in lateral view EBW body width measured in dorsal view in line with the middle of the eyes IO inter-orbital span, distance between eyes IN inter-narial span, distance between inner edges of nares ED maximum eye diameter measured in lateral view EN eye to naris from posterior edge of naris to anterior corner of eye, measured in dorsal view SS snout to spiracle distance, from tip of snout to dorsal corner of spiracular opening SN snout to naris distance measured in lateral view from tip of snout to anterior edge of narial opening SE snout to eye distance measured in lateral view from tip of snout to anterior edge of eye TD Maximum depth of tail measured in lateral view BTM Maximum depth of anterior end of tail muscle ODW Maximum width of oral disc measured in ventral view Due to a history of known mitochondrial-nuclear discordance in the genus (see Catullo & Keogh 2014), phylogenies of the mitochondrial and concatenated nuclear datasets were estimated independently. Alignments were created using the MAAFT algorithm (Katoh et al. 2002) in GENEIOUS 6.1.8 (Biomatters Ltd.). Bayesian inference was performed using BEAST 2.3.0 (Bouckaert et al. 2014). Partitions and models were selected using the programme PARTITIONFINDER 1.1 (Lanfear et al., 2012) (Appendix 1), and were selected using the lowest BIC score and a greedy algorithm. The concatenated mitochondrial and nuclear datasets were run for 10 million and 20 million generations respectively. Each analysis was run three times and the first 10% discarded as burning. Convergence of parameter values within runs was assessed using Tracer 1.6.0 (http://tree.bio.ed.ac.uk/software/ tracer/), and convergence of independent runs on the same topology was assessed using an R version of AWTY (Nylander et al. 2008); https://github.com/danlwarren/RWTY). Edges with a posterior probability of 0.90 or more were considered significant. Phylogenetic relationships were assessed under maximum likelihood using the multiparallel version of IQ- TREE (Minh et al. 2013), using 10,000 bootstrap replicates of the ultrafast bootstrap approximation. Analyses were conducted using the models and partitions selected under the TESTLINK function. Edges with bootstrap proportions of 70 or more were considered significant. A NEW SPECIES OF UPEROLEIA FROM AUSTRALIA Zootaxa 4184 (2) © 2016 Magnolia Press · 287 (cid:20)(cid:14)(cid:7)(cid:6)(cid:12)(cid:8)(cid:16)(cid:6)(cid:10)(cid:6)(cid:10)(cid:24)(cid:2) )(cid:16)"(cid:16)(cid:26)(cid:16)(cid:12)(cid:17)(cid:16)(cid:7) (cid:28)(cid:16)(cid:9)(cid:10)(cid:2)(cid:10)(cid:8)(cid:19)(cid:4)(cid:22)(cid:2) (cid:2) (cid:2) 6(cid:14)(cid:5)(cid:9)(cid:6)(cid:10)(cid:2)(cid:6)(cid:8)(cid:2)(cid:14)(cid:15)(cid:24)(cid:2)(cid:29) &’+$(cid:2) 6(cid:14)(cid:5)(cid:9)(cid:6)(cid:10)(cid:2):(cid:2)5(cid:9)(cid:8)(cid:8)(cid:15)(cid:6);(cid:17)(cid:16)(cid:12)(cid:2)(cid:29) &’+$(cid:2) 6(cid:14)(cid:5)(cid:9)(cid:6)(cid:10)(cid:2):(cid:2)5(cid:9)(cid:8)(cid:8)(cid:15)(cid:6);(cid:17)(cid:16)(cid:12)(cid:2)(cid:29) &’+$(cid:2) 6(cid:14)(cid:5)(cid:9)(cid:6)(cid:10)(cid:2):(cid:2)<(cid:13)6(cid:17)(cid:12)(cid:14)(cid:15)(cid:4)(cid:2)(cid:29) &’)$(cid:2) 6(cid:14)(cid:5)(cid:9)(cid:6)(cid:10)(cid:2):(cid:2)5(cid:9)(cid:8)(cid:8)(cid:15)(cid:6);(cid:17)(cid:16)(cid:12)(cid:2)(cid:29) &’+$(cid:2) 6(cid:14)(cid:5)(cid:9)(cid:6)(cid:10)(cid:2):(cid:2)5(cid:9)(cid:8)(cid:8)(cid:15)(cid:6);(cid:17)(cid:16)(cid:12)(cid:2)(cid:29) &’+$(cid:2) (cid:12)(cid:2) (cid:12)(cid:10)(cid:2)(cid:26)(cid:9)(cid:8)(cid:16)(cid:2)(cid:7)(cid:14)(cid:12)(cid:23)(cid:6)(cid:10)(cid:2)(cid:9) (cid:29)(cid:19)(cid:31)(cid:31)(cid:10)(cid:7)(cid:11)(cid:16)(cid:26)(cid:7)(cid:25)(cid:18)(cid:12)(cid:27)(cid:20)(cid:16)(cid:7)(cid:21)(cid:12)(cid:23)(cid:7) "+(cid:24)*(cid:2)(cid:29)"*(**$(cid:2) *!(cid:24))(cid:2)(cid:29)"&(*"$(cid:2) "(cid:30)(cid:2)(cid:29)(cid:2)%(cid:2)$(cid:2) ’(cid:2)(cid:29)(cid:2)%(cid:2)$(cid:2) )(cid:2)(cid:29)(cid:2)%(cid:2)$(cid:2) %(cid:2) %(cid:2) %(cid:2) %(cid:2) %(cid:2) %(cid:2) %(cid:2) %(cid:2) %(cid:2) %(cid:2) %(cid:2) %(cid:2) %(cid:2) (cid:14) (cid:6) (cid:11) (cid:6)(cid:10)(cid:2)(cid:14)(cid:7)(cid:6)(cid:2)(cid:23)(cid:9)(cid:5)(cid:6)(cid:12)(cid:2)(cid:14)(cid:10)(cid:2) (cid:29)(cid:19)(cid:31)(cid:31)(cid:7)((cid:27)(cid:26)(cid:19)(cid:20)(cid:18)(cid:13)(cid:12)(cid:7)(cid:21)(cid:25)(cid:10)(cid:23)(cid:7) (cid:30)*"(cid:2)(cid:29)**+()(cid:30)!$(cid:2) "’’(cid:2)(cid:29)")!(*")$(cid:2) ")!(cid:2)(cid:29)"(cid:30)!("+!$(cid:2) *&!(cid:2)(cid:29)* !((cid:30)+!$(cid:2) *&!(cid:2)(cid:29)*"!((cid:30)+!$(cid:2) *!"(cid:2)(cid:29)""!(*+!$(cid:2) +*#(cid:2)(cid:29))#"(+’!$(cid:2) )* (cid:2)(cid:29)(cid:30)!)(+!’$(cid:2) +!*(cid:2)(cid:29)(cid:30)&&(#"*$(cid:2) + !(cid:2)(cid:29)) #(# *$(cid:2) +#(cid:30)(cid:2)(cid:29)+!*(#(cid:30)+$(cid:2) )&+(cid:2)(cid:29)(cid:30)+’(# +$(cid:2) (cid:30)’*(cid:2)(cid:29)(cid:30)+*()"*$(cid:2) #(cid:2)(cid:29) !( "!$(cid:2) &(cid:30)(cid:2)(cid:29)’ ( !*$(cid:2) "*!(cid:2)(cid:29)" "(")*$(cid:2) "")(cid:2)(cid:29)"!"("(cid:30) $(cid:2) ")&(cid:2)(cid:29)"!’(* $(cid:2) (cid:19) (cid:14)(cid:15) (cid:17)(cid:14)(cid:4)(cid:15)(cid:22)(cid:2)(cid:9)(cid:12)(cid:2)(cid:7)(cid:14)(cid:12)(cid:23)(cid:6)(cid:24)(cid:2)(cid:25) (cid:30)(cid:27)(cid:31)(cid:10)(cid:16)(cid:10)(cid:7)(cid:11)(cid:16)(cid:26)(cid:7)(cid:17)(cid:19)(cid:31)(cid:31)(cid:7)(cid:21)(cid:12)(cid:23)(cid:7) *&(cid:24)&(cid:2)(cid:29)* ((cid:30)+$(cid:2) **(cid:24)(cid:30)(cid:2)(cid:29)"#(*#$(cid:2) "+(cid:24) (cid:2)(cid:29)"(cid:30)("’$(cid:2) * (cid:2)(cid:29)"#(*(cid:30)$(cid:2) **(cid:24)#(cid:2)(cid:29)**(*(cid:30)$(cid:2) &(cid:24))(cid:27)(cid:2)(cid:29) ("’$(cid:2) )"(cid:2)(cid:29)(cid:30)’())$(cid:2) *&(cid:24)+(cid:2)(cid:29)*"((cid:30)(cid:30)$(cid:2) (cid:30)’(cid:24)’(cid:2)(cid:29)(cid:30)"()+$(cid:2) (cid:30)&(cid:24)’(cid:2)(cid:29)(cid:30)*(+"$(cid:2) ) (cid:2)(cid:29)(cid:30)#())$(cid:2) *#(cid:2)(cid:29)*"((cid:30)"$(cid:2) (cid:30)(cid:30)(cid:24)(cid:30)(cid:2)(cid:29)(cid:30)"((cid:30)+$(cid:2) (cid:30)(cid:2)(cid:29)(cid:30)((cid:30)$(cid:2) *(cid:24)(cid:30)(cid:2)(cid:29)*((cid:30)$(cid:2) " (cid:24)’(cid:2)(cid:29) &(")$(cid:2) "(cid:30)(cid:24)*(cid:2)(cid:29)""("+$(cid:2) ""(cid:2)(cid:29) ’("+$(cid:2) (cid:21)(cid:7) (cid:2)(cid:8)(cid:16)(cid:14)(cid:8)(cid:2)(cid:17)(cid:5)(cid:6)(cid:7)(cid:15)(cid:14)(cid:20)(cid:2)roleia (cid:22)(cid:13)(cid:25)(cid:18)(cid:12)(cid:19)(cid:12)(cid:20)(cid:7)"(cid:26)(cid:16)#(cid:27)(cid:16)(cid:12)(cid:17)$(cid:7)(cid:21)%&’(cid:23)(cid:7) "(cid:24) )(cid:2)(cid:29) (cid:24)&)("(cid:24)* $(cid:2) "(cid:24))+(cid:2)(cid:29)"(cid:24)*!("(cid:24)#’$(cid:2) "(cid:24)(cid:30)"(cid:2)(cid:29)"(cid:24)*+("(cid:24)(cid:30)&$(cid:2) "(cid:24)*#(cid:2)(cid:29)"(cid:24)*)("(cid:24)(cid:30)!$(cid:2) "(cid:24)*+(cid:2)(cid:29)"(cid:24)"’("(cid:24)(cid:30)"$(cid:2) "(cid:24)#(cid:2)(cid:29)(cid:2)%(cid:2)$(cid:2) "(cid:24)"(cid:30)(cid:2)(cid:29)"(cid:24) !("(cid:24)*#$(cid:2) "(cid:24)"(cid:30)(cid:2)(cid:29) (cid:24)&"("(cid:24)(cid:30)!$(cid:2) "(cid:24)*(cid:2)(cid:29)"(cid:24) )("(cid:24)*+$(cid:2) "(cid:24)! (cid:2)(cid:29) (cid:24)&&("(cid:24)!)$(cid:2) "(cid:24)*(cid:2)(cid:29)"(cid:24)" ("(cid:24)*’$(cid:2) "(cid:24) (cid:2)(cid:29)"(cid:24)!#("(cid:24) #$(cid:2) "(cid:24)!&(cid:2)(cid:29)"(cid:24)!)("(cid:24) +$(cid:2) "(cid:24))’(cid:2)(cid:29)"(cid:24))!("(cid:24)#)$(cid:2) "(cid:24)!)(cid:2)(cid:29) (cid:24)&(cid:30)("(cid:24)"!$(cid:2) "(cid:24) (cid:2)(cid:29)"(cid:24)! ("(cid:24)"(cid:30)$(cid:2) "(cid:24)")(cid:2)(cid:29)"(cid:24) (cid:30)("(cid:24)*+$(cid:2) "(cid:24)!+(cid:2)(cid:29)"(cid:24)!*("(cid:24)!&$(cid:2) e p U (cid:10)(cid:11)(cid:9)(cid:7)(cid:12)(cid:13)(cid:14)(cid:2)(cid:14)(cid:12)(cid:4)(cid:2)(cid:18)(cid:9)(cid:5)(cid:6)(cid:2)(cid:17)(cid:8)(cid:16)(cid:6)(cid:7)(cid:2)(cid:10)(cid:17)(cid:19)(cid:8)(cid:16)(cid:2)(cid:6)(cid:14)(cid:10)(cid:8)(cid:6)(cid:7)(cid:12)(cid:2)mahonyi . (cid:12)(cid:23)(cid:6)(cid:2)(cid:26)(cid:14)(cid:10)(cid:2)(cid:20)(cid:7)(cid:17)(cid:5)(cid:9)(cid:4)(cid:6)(cid:4)(cid:2)(cid:9)(cid:12)(cid:2)(cid:8)(cid:16)(cid:6)(cid:2)(cid:17)(cid:7)(cid:9)(cid:23)(cid:9)(cid:12)(cid:14)(cid:15)(cid:2)(cid:10)(cid:17)(cid:19)(cid:7)(cid:13)(cid:6)(cid:24)(cid:2)(cid:2)(cid:2) !(cid:2)(cid:16)(cid:25)(cid:11)(cid:16)(cid:26)(cid:19)(cid:20)(cid:27)(cid:26)(cid:16)(cid:7)(cid:21)(cid:28)(cid:29)(cid:23)(cid:7)(cid:30)(cid:27)(cid:31)(cid:10)(cid:16)(cid:7)(cid:26)(cid:19)(cid:20)(cid:16)(cid:7)(cid:21)(cid:10)(cid:23)(cid:7) (cid:30)(cid:2)(cid:29)(cid:2)%(cid:2)$(cid:2)&"(cid:24)#(cid:2)(cid:29)##(cid:24)’( ! (cid:24))$(cid:2) ’(cid:2)(cid:29) #(cid:24))( ’(cid:24))$(cid:2) )(cid:24)’(cid:2)(cid:29) !#(cid:24) ( ")(cid:24))$(cid:2) (cid:30)(cid:24)+(cid:2)(cid:29)(cid:2)%(cid:2)$(cid:2) !(cid:30)(cid:24)"(cid:2)(cid:29)&(cid:30)(cid:24))( !&(cid:24)’$(cid:2) )(cid:24))(cid:2)(cid:29)(cid:2)%(cid:2)$(cid:2)#&(cid:24)+(cid:2)(cid:29)#(cid:30)(cid:24) (’+(cid:24))$(cid:2) (cid:2)(cid:29)(cid:2)%(cid:2)$(cid:2)’#(cid:24)#(cid:2)(cid:29)#*(cid:24)’( !#(cid:24)&$(cid:2) ""(cid:24)*(cid:27)(cid:2)(cid:29)" (cid:24))("*(cid:24) $(cid:2)+’(cid:24)(cid:30) (cid:2)(cid:29)+(cid:30)(cid:24)’+(#*(cid:24)!’$(cid:2) "(cid:2)(cid:29) (cid:24)#( "(cid:24)#$(cid:2)’!(cid:24)#(cid:2)(cid:29)##(cid:24)!(’*(cid:24)!$(cid:2) !(cid:2)(cid:29)(cid:2)%(cid:2)$(cid:2)#*(cid:24)’(cid:2)(cid:29)+&(cid:24)(cid:30)(#’(cid:24)!$(cid:2) (cid:24) (cid:2)(cid:29) !(cid:24)+( (cid:24))$(cid:2)’!(cid:24)’(cid:2)(cid:29)+&(cid:24)#(&)(cid:24)!$(cid:2) )(cid:24)’(cid:2)(cid:29) )( +(cid:24))$(cid:2)’!(cid:24)’(cid:2)(cid:29)#"(cid:24)"(’#(cid:24)*$(cid:2) (cid:30)(cid:24))(cid:2)(cid:29) (cid:30)(cid:24)"( (cid:30)(cid:24)’$(cid:2)#)(cid:24) (cid:2)(cid:29)#"(cid:24)’(##(cid:24)(cid:30)$(cid:2) #(cid:24)&(cid:2)(cid:29)#(cid:24)"(’(cid:24)(cid:30)$(cid:2)+"(cid:24) (cid:2)(cid:29))’(cid:24)!(+#(cid:24)#$(cid:2) +(cid:24))(cid:2)(cid:29) )(cid:24))( #(cid:24) $(cid:2)& (cid:24))(cid:2)(cid:29)’#(cid:24)#(&+(cid:24)!$(cid:2) ""(cid:24))(cid:2)(cid:29)""(cid:24)"(""(cid:24)’$(cid:2)*(cid:30)(cid:24)(cid:30)(cid:2)(cid:29)**(cid:24)**(*+(cid:24)))$(cid:2) *(cid:24)*(cid:29) "(cid:24)+( (cid:30)(cid:24)*$(cid:2)* (cid:24) (cid:2)(cid:29)""(cid:24)’((cid:30)!(cid:24)’$(cid:2) (cid:30)(cid:24)(cid:30)(cid:2)(cid:29) *(cid:24)#( (cid:30)(cid:24)’$(cid:2)&"(cid:24)"(cid:2)(cid:29)’"(cid:24) (&)(cid:24)&$(cid:2) #(cid:2)(cid:29) +(cid:24)(cid:30)(#(cid:24)+$(cid:2) !’(cid:24))(cid:2)(cid:29) !)(cid:24)+( "(cid:24) $(cid:2) )(cid:24))(cid:2)(cid:29)(cid:2)%(cid:2)$(cid:2)’(cid:30)(cid:24))(cid:2)(cid:29)’*(cid:24) (’)(cid:24)&$(cid:2) peroleia (cid:12)(cid:15)(cid:22)(cid:2)(cid:8)(cid:16)(cid:6)(cid:2)(cid:7)(cid:14) (cid:24) (cid:30) " ) ) ) ’ ) " * ) * ) (cid:30) * " (cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:6)(cid:11)(cid:6)(cid:12)(cid:8)(cid:2)(cid:13)(cid:14)(cid:15)(cid:15)(cid:2)(cid:13)(cid:16)(cid:14)(cid:7)(cid:14)(cid:13)(cid:8)(cid:6)(cid:7)(cid:9)(cid:10)(cid:8)(cid:9)(cid:13)(cid:10)(cid:2)(cid:17)(cid:18)(cid:2)U (cid:5)(cid:6)(cid:12)(cid:2)(cid:14)(cid:7)(cid:6)(cid:2)(cid:11)(cid:6)(cid:4)(cid:9)(cid:14)(cid:12)(cid:10)(cid:2)(cid:7)(cid:14)(cid:8)(cid:16)(cid:6)(cid:7)(cid:2)(cid:8)(cid:16)(cid:14)(cid:12)(cid:2)(cid:11)(cid:6)(cid:14)(cid:12)(cid:10)(cid:2)(cid:14)(cid:10)(cid:2)(cid:17) (cid:5)(cid:13)(cid:17)(cid:19)(cid:20)(cid:18)(cid:13)(cid:12)(cid:7)(cid:21)(cid:22)(cid:19)(cid:20)(cid:16)(cid:23)(cid:7) (cid:28)(cid:22)(cid:20)(cid:6)(cid:2)(cid:15)(cid:17)(cid:13)(cid:14)(cid:15)(cid:9)(cid:8)(cid:22)(cid:2)(cid:29)(cid:30)(cid:31) !(cid:31)"!!#$(cid:2) (cid:28)(cid:22)(cid:20)(cid:6)(cid:2)(cid:15)(cid:17)(cid:13)(cid:14)(cid:15)(cid:9)(cid:8)(cid:22)(cid:2)(cid:29) "(cid:31)!"(cid:31)"!!’$(cid:2) (cid:28)(cid:17)(cid:11)(cid:14)(cid:23)(cid:17)(cid:2)(cid:10)(cid:26)(cid:14)(cid:15)(cid:6),(cid:2)-./(cid:2)(cid:29)""(cid:31) !(cid:31)"!!&$(cid:2) -(cid:6)(cid:15)(cid:10)(cid:17)(cid:12)(cid:2)0(cid:14)(cid:22)(cid:2)1(cid:17)(cid:15)(cid:18)(cid:2)2(cid:17)(cid:19)(cid:7)(cid:10)(cid:6),(cid:2)-./(cid:2)(cid:29))(cid:31) !(cid:31)"!!&$(cid:2) (cid:28)(cid:17)(cid:11)(cid:14)(cid:23)(cid:17)(cid:2)(cid:10)(cid:26)(cid:14)(cid:11)(cid:20),(cid:2)-./(cid:2)(cid:29)#(cid:31) !(cid:31)"!!&$(cid:2) 3(cid:19)(cid:12)(cid:23)(cid:6)(cid:15)(cid:15)(cid:14),(cid:2)456(cid:2)(cid:29)"+(cid:31)! (cid:31) &’(cid:30)$(cid:2) 7(cid:14)8(cid:4)(cid:14)(cid:15)(cid:6),(cid:2)-./(cid:2)(cid:2)(cid:29)*!(cid:31)!&(cid:31) &#)$(cid:2) /(cid:14)(cid:15)(cid:26)(cid:14),(cid:2)(cid:25)92(cid:2)(cid:29)"(cid:31)!&(cid:31) &+(cid:30)$(cid:2) 6(cid:6)(cid:15)(cid:6)(cid:23)(cid:14)(cid:8)(cid:6),(cid:2)-./(cid:2)(cid:29) )(cid:31) (cid:31) &+)$(cid:2) -(cid:17)(cid:26)(cid:14)(cid:2)-(cid:17)(cid:26)(cid:14),(cid:2)(cid:25)92(cid:2)(cid:29)#(cid:31) "(cid:31) &+*$(cid:2) -(cid:14)(cid:7)(cid:7)(cid:14)(cid:21)(cid:14)(cid:7)(cid:21)(cid:14),(cid:2)-./(cid:2)(cid:29)"(cid:30)(cid:31)!&(cid:31) &’)$(cid:2) <(cid:14)(cid:7)(cid:15)(cid:17),(cid:2)(cid:25)92(cid:2)(cid:29)"+(cid:31)!&(cid:31) &’)$(cid:2) =(cid:14)(cid:7)(cid:7)(cid:14)(cid:11),(cid:2)(cid:25)92(cid:2)(cid:29) (cid:31) "(cid:31) &’!$(cid:2) 2(cid:17)(cid:15)(cid:17)(cid:10)(cid:10)(cid:6)(cid:19)(cid:11),(cid:2)456(cid:2)(cid:29) "(cid:31) "(cid:31) &’(cid:30)$(cid:2) .(cid:14)(cid:5)(cid:6)(cid:7)(cid:12)(cid:14)8(cid:6),(cid:2)-./(cid:2)(cid:29)"#(cid:31)!#(cid:31) &+&$(cid:2) -(cid:14)(cid:7)(cid:7)(cid:14)(cid:21)(cid:14)(cid:21)(cid:7)(cid:14),(cid:2)-./(cid:2)(cid:29)"(cid:30)(cid:31)!&(cid:31) &’)$(cid:2) <(cid:14)(cid:7)(cid:15)(cid:17),(cid:2)(cid:25)92(cid:2)(cid:29)"#(cid:31)!&(cid:31) &’ $(cid:2) >(cid:6)(cid:7)(cid:5)(cid:9)(cid:10)(cid:2)0(cid:14)(cid:22),(cid:2)(cid:3)2(cid:28)(cid:2)(cid:29) #(cid:31)! (cid:31) &+*$(cid:2) (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:2) (cid:2)(cid:27)(cid:2)(cid:5)(cid:14)(cid:15)(cid:19)(cid:6)(cid:10)(cid:2)(cid:23)(cid:9) (cid:15)(cid:11)(cid:16)(cid:17)(cid:18)(cid:16)(cid:10)(cid:7) Uperoleia (cid:2)mahonyi(cid:10)(cid:11)(cid:9)(cid:7)(cid:12)(cid:13)(cid:14)(cid:9) Uperoleia fusca Uperoleia laevigata Uperoleia martini Uperoleia rugosa Uperoleia tyleri 288 · Zootaxa 4184 (2) © 2016 Magnolia Press CLULOW ET AL. Embryos and tadpoles. Embryos and tadpoles were staged using Gosner (1960). A pair of U. mahonyi sp. nov. in amplexus was collected at the type locality on 4 March, 2013 and transported to the University of Newcastle, where they laid fertile eggs in an artificial enclosure. Embryos were allowed to develop in pond water collected from the type locality and a sample was preserved in 10% buffered formalin at stages 7–8 and at hatching (stages 20–22). Tadpoles at stages 38–41 were collected on 26 March, 2009 and tadpoles at stages 25–29 plus a single embryo which later hatched, were collected on 31 October, 2010 at the type locality. Some were raised to metamorphosis in 40 cm plastic containers (opaque sides) holding water to a depth of 15 cm over a substrate of sand, leaf litter from the collection site, and rocks. They were fed pieces of crushed Spirulina algae discs. Water temperature was not controlled. Metamorphosis was complete from 28 December, 2010. Samples were photographed then preserved at various stages (Table 3). Morphometric measurements of anaesthetised and preserved specimens were obtained with the aid of Vernier callipers and a micrometer eye-piece attached to a stereoscopic microscope. Voucher specimens were preserved in 4% buffered formalin (Tyler 1962) and some in 70% ethanol. The drawing of the oral disc was prepared with the aid of a drawing tube attached to the microscope. Tadpoles were staged according to Gosner (1960). Methods of measurement and abbreviations of morphometric measurements of tadpoles are shown in (Table 1) and follow Anstis (2013). Measurements are of random samples at different stages, and not the same individuals measured through growth stages. FIGURE 1. Distribution of eastern Uperoleia sampled for this study. (A) distribution of eastern Uperoleia species across southern Queensland, New South Wales and Victoria as determined through phylogenetic evidence; (B) zoomed in image of the distribution of Uperoleia mahonyi sp. nov. phylogenetic samples, including records of other sympatric Uperoleia spp.; (C) the results of the targeted surveys, including sites surveyed where no Uperoleia were detected. Black lines in (C) represent major roads. Distribution and habitat. Potentially suitable sites for the species were identified using topographic maps and satellite images of an area of the mid-north coast of NSW, approximately 70km to the north and south of the type locality (Fig. 1). The survey area encompassed the coastal sandbed systems of the Central Coast to the south (lying to the north of the Sydney Basin, approximately -33.3670, 151.4434) to the top of the Myall Lakes sandbed system A NEW SPECIES OF UPEROLEIA FROM AUSTRALIA Zootaxa 4184 (2) © 2016 Magnolia Press · 289 to the north (around Seal Rocks, approximately -32.4164, 152.5418). A variety of water body types known to form potential habitat for other species of Uperoleia were selected as survey sites and included swamps; ditches, dams and swales (both naturally occurring and man-made); and areas subjected to inundation. Water bodies selected also ranged from permanent to ephemeral. A total of 45 survey sites were chosen haphazardly from all those identified from maps and images (Fig. 1C). In addition to the formal surveys, communications were made with other known amphibian biologists and enthusiasts that had previously worked in, or had surveyed in the area. In these cases, photographs of any Uperoleia that they had identified were requested and used to identify the species present, along with details of habitat and location. All sites were inspected in the day to record basic notes on the type of waterbody present, and to assess their suitability for survey. Any species of frog observed during diurnal inspections were recorded. Sites were then surveyed at night to locate frog species by aural detection and habitat searches. In most cases where a U. mahonyi sp. nov. was found, a call recording was taken to build a library of calls across its range. All other species of frogs observed at each site were also recorded. FIGURE 2. Differing nuclear (A) and mitochondrial (B) phylogenies of eastern Uperoleia including Uperoleia mahonyi sp. nov. See text for details. 290 · Zootaxa 4184 (2) © 2016 Magnolia Press CLULOW ET AL. Results Phylogenetic analysis. The nuclear alignment comprised 2,961 base pairs, and no individual was missing more than a single locus in the nuclear alignment. The mitochondrial alignment comprised 1,946 base pairs, and was 98.75% complete for mtDNA gene 16S, and 97.5% complete for ND2 (Appendix 2: Genbank Accession Numbers). The concatenated Beast analysis of the nuclear DNA (Fig. 2A) recovered five well-supported clades. Clade 1 consisted of individuals from U. tyleri and U. martini. Although the close relationship of these two species was strongly supported (Bayesian Posterior Probability (BPP) = 1), our nuclear dataset was unable to distinguish between them. Clade 2, sister to clade 1 (BPP = 1), comprises all individuals from U. mahonyi sp. nov. (BPP = 1). Clades 3 (representing U. fusca) and 4 (representing U. laevigata) each form well supported monophyletic clades (BPP = 1), however, the placement of U. fusca and U. laevigata in relation to the U. tyleri/U.martini/U. mahonyi sp. nov. clade is not well supported. Uperoleia rugosa, a NSW species that forms part of another major radiation of Uperoleia Catullo & Keogh 2014), forms a well-supported outgroup to all other NSW species (BPP = 1). The concatenated Beast analysis of the mitochondrial DNA (Fig. 2B) found a substantially different topology from the nuclear DNA, but also recovered strong support (BPP = 1) for the U. tyleri, U. martini, U. fusca, and U. rugosa species. The clade consisting of all U. mahonyi sp. nov. individuals formed a well-supported monophyletic group (BPP = 1), however, this clade is placed within the broader U. laevigata clade (BPP = 1). The maximum likelihood analyses recovered the same topologies, with generally strong support. Systematics The new species is clearly assignable to Uperoleia based on genetic data and external characters, including small body size, squat body, rough skin, short limbs, the distinct femoral colour patch, well developed glands that cover the tympana, unwebbed hands, lack of vomerine teeth, horizontal pupil and call. Genus Uperoleia Gray, 1841 Uperoleia Gray, 1841, Ann. Mag. Nat. Hist., Ser. 1, 7: 90. Hyperoleia Agassiz, 1846, Nomencl. Zool., Fasc. 12: 384. Unjustified emendation. Glauertia Loveridge, 1933, Occas. Pap. Boston Soc. Nat. Hist., 8: 89. Type species: Glauertia russelli Loveridge, 1933, by monotypy. Synonymy by Tyler et al. 1981, Aust. J. Zool., Suppl. Ser., 29 (79): 9. Hosmeria Wells & Wellington, 1985, Aust. J. Herpetol., Suppl. Ser., 1: 2. Type species: Uperoleia marmorata laevigata Keferstein, 1867, by original designation. Synonymy by Catullo et al. 2011, Zootaxa, 2902; 1–43. Prohartia Wells & Wellington, 1985, Aust. J. Herpetol., Suppl. Ser., 1: 3. Type species: Pseudophryne fimbrianus Parker, 1926, by original designation. Synonymy by Catullo et al. 2011, Zootaxa, 2902; 1–43. Type species.U. marmorata Gray, 1841, by monotypy. Uperoleia mahonyi sp. nov. Mahony’s Toadlet Figs. 3 & 4 Holotype. SAMA R66193 (male), collected in an ephemeral swale on sand at Oyster Cove, NSW (-32.7394, 151.9557) by S. Clulow on 12 February, 2008. Paratypes. SAMA R66187, SAMA R66188, SAMA R66189, SAMA R66190, SAMA R66191, AMS R185691 and AMS R185692 (adult males), collected at type locality, NSW (-32.7394, 151.9557) on 4 October 2007; SAMA R66192 (adult female), collected at type locality, NSW on 31 March 2007; SAMA R66194 (adult male), collected at the same locality and date as the holotype; AMS R185695 (adult male), collected at type locality, NSW on 12 October 2009; AMS R185701 (adult female), collected at type locality, NSW on 1 March 2013; SAMA R66186 and SAMA R66195 (sex not determined), collected at type locality, date not recorded; AMS R185693 (adult male), collected in an artificial dam on sand at Nelson Bay Golf Course, NSW (-32.7294, A NEW SPECIES OF UPEROLEIA FROM AUSTRALIA Zootaxa 4184 (2) © 2016 Magnolia Press · 291 152.1511) on 5 October 2009; AMS R185697 and AMS R185698 (adult males), collected in a sand dune swale behind Stockton Beach, NSW (-32.8293, 151.8825) on 1 November 2009; AMS R185696 (adult male), collected in an ephemeral swale on the Tomago sandbed, NSW (-32.7939, 151.7880) on 22 October 2009; AMS R185694 (adult male), collected in a Melaleuca swamp off Masonite Road, Tomago, NSW (-32.8026, 151.7646); AMS R185699 and AMS R185700 (adult females), collected in pit traps on a sand dune at Wyrrabalong National Park ~400 m from a coastal hind dune swamp (-33.2970, 151.5503) on 28 May 2012. Diagnosis. Distinguished as a Uperoleia by a combination of small body size (males 20–30 mm), large parotoid glands covering tympanum, unwebbed fingers, vomerine teeth vestigial or absent, inguinal colouration present, and presence of inner and outer metatarsal tubercles. Distinguished from all other Uperoleia by a combination of ventral pigment (ventral surface completely covered with black and white marbling), presence of maxillary teeth, toes unwebbed, lack of colour patch below the knee, and a “squelch” as a call. FIGURE 3. Dorsolateral (A) and ventral (B) photographs of holotype of Uperoleia mahonyi sp. nov. (SAMA R66193) in life. Photographs S. Clulow. Holotype measurements. Measurements (in mm): SVL—22.2; TibL—9.3; HW—9.0, E—2.6; E-N—1.9; IN—1.7; T—3.3; CP—1.9; CP-K—1.4; CP-V—3.4. Measurements of series. Mean ± standard deviation in mm. Adult males (n = 11): SVL—25.2±3.1; TibL— 10.0±0.4; HW—9.9±1.1, E—3.1±0.6; E-N—2.1±0.3; IN—1.7±0.2; CP—3.2±0.9; CP-K—1.5±0.3; CP-V— 3.7±0.4. Adult females (n = 3): SVL—29.3±2.5; TibL—11.1±1.2; HW—10.7±1.5, E—3.1±0.4; E-N—2.3±1.8; IN—1.8±0.2; CP—3.9 (n = 1); CP-K—1.0 (n = 1); CP-V—5.1 (n = 1). Description of species. Body is robust and moderately large for a Uperoleia, with males up to 30mm SVL and females up to 32 mm SVL. Head is short, snout rounded from above and in profile. Canthus rostralis well defined and slightly protruding; loreal region slopes steeply to jaw and is very slightly concave. There is a moderately sharp medial projection (synthesis of mentomeckelian bones) of the lower jaw that matches notch on upper jaw. Nostrils directed upward and outward; nares with slight rim. Tongue oval and elongate. Maxillary teeth present; vomerine teeth absent. E-N larger than IN (E-N/IN = 1.2 for males and 1.3 for females). Tympana hidden; covered by skin and parotoid glands. Eyes with horizontal iris. Vocal sac unilobular. Arms and hands slightly built. Fingers long, slender, slightly fringed and unwebbed. Finger length 3>2≥4>1. Tubercles under fingers well developed; one on first and second, two on third and fourth. Well-developed, prominent outer palmar tubercle on distal portion of wrist; well-developed inner palmer tubercle on medial portion of wrist. Legs relatively short (TL/SVL = 0.4 for both males and females) and moderately built. Toes slender, unwebbed and fringed. Toe length 4>3>5>2>1. Tubercles under toes well developed and slightly conical in shape; one on first and second, two on third and fifth, and three on fourth toe. Inner metatarsal tubercle long and conical, aligned along the first toe. Outer metatarsal tubercle spade-shaped and prominent, oriented in the direction of the fifth toe. 292 · Zootaxa 4184 (2) © 2016 Magnolia Press CLULOW ET AL. FIGURE 4. Uperoleia mahonyi sp. nov. demonstrating the range of variation in dorsal colour and patterning observed in life. (A) female AMS R185700, Wyrrabalong National Park NSW, and (B) same specimen in dark phase (photographs S. Clulow); (C) calling male with vocal sac extended, specimen not collected, type locality (photograph S. Mahony); (D) female AMS R185700 showing groin colour patch, Wyrrabalong National Park NSW (photograph S. Clulow); (E) male and female in amplexus, specimens not collected, type locality (photograph S. Mahony); (F) male, specimen not collected, Norah Head NSW (photograph J. Mulder). Dorsum smooth to moderately rugose, with scattered fine tubercles on back, head and limbs. Ventral surface weakly granular. Cloacal flap present and fimbriated. Parotoid glands large and prominent, appearing hypertrophied and usually wider than high. Inguinal glands occasionally discernible but not well-developed and rarely obvious. Coccygeal glands indistinct. Mandibular gland moderately developed but small in most, present at corner of the jaw. Colouration. In life, dorsum patterned with irregular patches of pale, tan, chocolate or dark brown (verging on black) and occasionally greys throughout. In some darker specimens the colour can appear almost uniform. The dorsal colouration usually merges into patterns of bluish grey and dark brown onto the lower flanks. Dorsal A NEW SPECIES OF UPEROLEIA FROM AUSTRALIA Zootaxa 4184 (2) © 2016 Magnolia Press · 293 tubercles often (but not always) tipped with a pale yellow-orange to rust-orange, which can also occur on the parotoid glands. Many individuals have a lighter brown triangular patch on head from between the eyes to tip of snout, although this can also contain small patterns or flecks of darker brown. Ventral surface entirely pigmented, black with suffusions of irregular patches of small off-white/bluish-white dots. The patches of white dots appear as solid patches to the naked eye, especially on the legs. The patterns of black and white patches appear marbled, more similar to the bellies of Pseudophryne spp. rather than simply stippled as commonly observed in Uperoleia spp. (see Figs 3 & 5). Inguinal and femoral colour patches orange in all specimens observed. Femoral colour patch irregular in shape and large and always closer to knee than vent. Throats of calling males may have dark anterior margin, sometimes covering most of the chin. TABLE 3. Morphometric measurements of preserved larval Uperoleia mahonyi sp. nov. from the type locality. Values in mm, mean ±STD with range shown beneath. Developmental stages follow Gosner (1960). Abbreviations for measurements are explained in Table 1. N 2 4 1 2 1 1 1 3 1 STAGE 25 26 27 29 30 33 34 35 37 TL 14, 14.5 21.4±2.1; 24.5 24.0, 24.0 24.0 26.0 26.6 26.6±1.7; 29.2 19.5–24.0 25.3–28.5 BL 6.0, 6.1 9.5±1.2; 8.1– 11.3 10.6, 10.8 10.3 11.8 11.6 11.7±0.1; 13.1 10.9 11.6–11.8 BW 4.0, 4.2 6.5±0.9; 5.3– 7.9 7.4, 7.9 7.0 8.2 7.9 7.9±0.3; 8.7 7.4 7.6–8.1 BD 3.1, 3.5 5.9±1.2; 4.8– 6.9 6.1, 6.6 5.8 7.1 6.1 6.7±0.1; 7.6 7.4 6.6–6.8 EBW 3.2, 3.2 4.9±0.6 6.0 4.0, 5.3 5.3 6.1 5.8 5.7±0.3; 6.0 4.0–5.3 5.5–6.0 IO 1.0, 1.1 1.6±0.2; 1.3– 1.7 1.9, 2.1 1.9 2.3 1.9 2.2±0.4; 2.3 1.8 1.9–2.6 IN 0.5, 0.6 0.7±0.1; 0.8– 0.8 0.8, 1.0 0.8 1.0 1.0 0.9±0.1; 0.8 0.8 0.8–1.0 N 0.2,0.2 0.4±0.1 0.2– 0.4 0.4, 0.5 0.4 0.5 0.4 0.5±0.1; 0.4 0.5 0.4–0.6 EN 0.5, 0.5 0.7±0.1; 0.6– 0.8 0.8, 0.8 0.8 0.8 0.8 0.8±0; 0.8 0.8 0.8–0.8 SS 4.7, 4.8 7.4±0.1; 6.1– 8.5 8.2, 8.9 7.9 9.2 9.0 9.0±0.5; 9.5 8.4 8.5–9.4 SN 0.6, 0.6 0.9±0.2; 0.8– 0.8 0.8, 1.0 0.8 1.0 1.1 1.0±0.2; 1.0 1.1 0.8–1.1 SE 1.1, 1.1 1.9±0.3; 1.5– 1.7 2.1, 2.3 2.1 2.1 2.3 2.2±0.2; 2.3 2.1 2.1–2.4 ED 0.6, 0.6 1.0±0.1; 0.8– 1.1 1.1, 1.1 1.0 1.3 1.3 1.3±0.1; 1.5 1.1 1.2–1.3 BTM 1.1, 1.1 1.7±0.2; 1.5– 2.3 1.8, 2.1 1.8 2.4 2.3 2.2±0.3; 2.3 1.9 1.9–2.4 TD 3.2, 3.4 4.6±0.4; 4.2– 5.6 5.2, 5.4 5.7 6.0 6.1 6.0±0.7; 5.8 5.0 5.3–6.6 DF 1.3, 1.5 2.0±0.3; 1.6– 2.6 2.3, 2.3 2.4 2.3 2.6 2.5±0.1; 2.4 2.2 2.4–2.6 TM 0.8, 1.0 1.2±0.1; 1.1– 1.6 1.3, 1.5 1.6 1.8 1.9 1.7±0.3; 1.6 1.3 1.5–2.1 VF 1.0, 1.1 1.4±0.1; 1.3– 1.5 1.6, 1.6 1.7 1.9 1.6 1.7±0.2; 1.8 1.5 1.5–1.9 ODW 1.2, 1.2 1.7±0.2; 1.4– 1.0 1.9, 2.0 1.8 2.0 2.1 1.9±0.3; 2.0 1.9 1.7–2.3 294 · Zootaxa 4184 (2) © 2016 Magnolia Press CLULOW ET AL.