ebook img

A duality principle for the entanglement entropy of free fermion systems PDF

1.9 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A duality principle for the entanglement entropy of free fermion systems

A duality principle for the entanglement entropy of free fermion systems Jose´ A. Carrasco1, F. Finkel1, A. Gonza´lez-Lo´pez1,*, and P. Tempesta1,2 1DepartamentodeF´ısicaTeo´ricaII,UniversidadComplutensedeMadrid,28040Madrid,Spain 2InstitutodeCienciasMatema´ticas(CSIC–UAM–UC3M–UCM),c/Nicola´sCabrera13–15,28049Madrid,Spain *Correspondingauthor. Email: [email protected] ABSTRACT 7 1 0 The analysis of the entanglement entropy of a subsystem of a one-dimensional quantum system is a powerful tool for 2 unravellingitscriticalnature. Forinstance,thescalingbehaviouroftheentanglemententropydeterminesthecentralcharge n oftheassociatedVirasoroalgebra. Forafreefermionsystem,theentanglemententropydependsessentiallyontwosets, a namelythesetAofsitesofthesubsystemconsideredandthesetKofexcitedmomentummodes. Inthisworkwededucea J generaldualityprincipleestablishingtheinvarianceoftheentanglemententropyunderexchangeofthesetsAandK. This 9 principlemakesitpossibletotacklecomplexproblemsbystudyingtheirdualcounterparts. Thedualityprincipleisalsoakey 1 ingredientintheformulationofanovelconjecturefortheasymptoticbehavioroftheentanglemententropyofafreefermion systeminthegeneralcaseinwhichbothsetsAandK consistofanarbitrarynumberofblocks. Wehaveverifiedthatthis ] conjecturereproducesthenumericalresultswithexcellentprecisionforalltheconfigurationsanalyzed. Wehavealsoapplied h p theconjecturetodeduceseveralasymptoticformulasforthemutualandr-partiteinformationgeneralizingtheknownonesfor - thesingleblockcase. t n a u Introduction q [ Oneofthedistinguishingfeaturesofthequantumrealmistheexistenceofentangledstatesincompositesystems,whichhave 1 noclassicalanalogueandplayafundamentalroleinquantuminformationtheoryandcondensedmatterphysics(see,e.g., v Refs.1,2). AwidelyusedquantitativemeasureofthedegreeofentanglementbetweentwosubsystemsA,Bofaquantumsystem 5 A∪Binapurestateρ =|ψ(cid:105)(cid:104)ψ|istheRényientanglemententropy3 S (A)=(1−α)−1logtr(ρα),whereρ isthereduced 5 α A A densitymatrixofthesubsystemAandα >0istheRényiparameter(thevonNeumannentropyisobtainedinthelimitα →1). 3 5 ItiseasytoshowthatSα(A)=Sα(B),andthattheentanglemententropyvanisheswhenthewholesystemisinanon-entangled 0 (product)state. Overthelastdecade,ithasbecomeclearthatthestudyoftheentanglementbetweentwoextendedsubsystems 1. ofamany-bodysysteminonedimensionisapowerfultoolforuncoveringitscriticalityproperties4–7. Thereasonforthisis 0 thatone-dimensionalcriticalquantumsystemsaregovernedbyaneffectiveconformalfieldtheory(CFT)in(1+1)dimensions, 7 whoseentanglemententropycanbeevaluatedinclosedforminthethermodynamiclimit8–10. Inthesimplestcase,whenthe 1 subsystemAconsistsofasingleintervaloflengthLandthewholesystemisinitsgroundstate,thescalingofS (A)forL→∞ α : v isdeterminedsolelybythecentralchargec. InordertoprobethefulloperatorcontentoftheCFT,oneneedstoanalyzemore i complicatedsituationsinwhichthesetAistheunionofafinitenumberofintervals. Infact,inthelastfewyearstherehas X beenaconsiderableinterestinthisproblem,bothforCFTsandone-dimensionallatticemodels(integrablespinchainsorfree r a fermionsystems),aswitnessedbythenumberofpaperspublishedonthissubject(see,e.g.,Refs.11–18). Inthisworkweshallextendthisanalysistothemoregeneralcaseinwhichthesystem’sstateisalsomadeupofseveral blocksofconsecutiveexcitedmomentummodes,whichhasreceivedcomparativelymuchlessattention19–21. Animportant motivationfordealingwiththistypeofstatesisthatitmakesitpossibletotreatpositionandmomentumspaceonamore equalfooting,thusrevealingcertainsymmetriesthathaveremainedunnoticedsofar. Thisapproachnaturallyleadstoanovel dualityprincipleforthebehavioroftheentanglemententropyundertheexchangeofthepositionandmomentumspaceblock configurations,whichinfactcanbeexploitedtosolveproblemsthatupuntilnowhaddefiedananalytictreatment22 with standardtechniquesliketheFisher–Hartwigconjecture23. Wehaveappliedthisdualityprincipletoproposeanewconjecture onthecomposabilityoftheentanglemententropyinthemulti-blockcase,whichyieldsaclosedasymptoticformulaforthe Rényi entanglement entropy of a free fermion system in the most general multi-block configuration, both in position and momentumspace. Thisformula,whichwehavenumericallyverifiedforawiderangeofconfigurationsbothfor0<α <1 andα (cid:62)1,reducestotheknownoneswhentheconfigurationinmomentumspaceconsistsofasingleblock. Italsoleadsto closedasymptoticformulasforthemutualandthetripartite12(orr-partite18)information,whichagainagreewiththegeneral CFTpredictions. Results and methods Preliminariesandnotation ThemodelconsideredisasystemofN free(spinless)hoppingfermionswithcreationoperatorsa†(wherethesubindex j= j 0,...,N−1denotesthesite)andHamiltonianH=∑Ni,j−=10gN(i−j)a†iaj preservingthetotalfermionnumber. Weshallfurther assume that the hopping amplitude g satisfies g (k)=g (−k)∗ =g (k+N), so that H is Hermitian and translationally N N N N invariant. Forthisreason,itisconvenienttointroducetheFourier-transformedcreationoperators 1 N−1 a†= √ ∑ e2πijl/Na†, 0(cid:54)l(cid:54)N−1. (1) (cid:98)j N l l=0 It is straightforward to check that the operators a , a† satisfy the canonical anticommutation relations (CAR), and that (cid:98)j (cid:98)j theydiagonalizeH. Infact,wehaveH =∑Nl=−01εN(l)a(cid:98)l†a(cid:98)l,withεN(l)=∑Nj=−01gN(j)e2πijl/N.Itcanbeshownthatthetotal momentumoperatorPisalsodiagonalinthisrepresentation,namelyP=∑lN=−01pla(cid:98)l†a(cid:98)l,with pl =2πl/N mod2π. Thusthe operatora†createsa(non-localized)fermionwithwell-definedenergyε (l)andmomentum p. Notethatε (l)isobviously (cid:98)l N l N realforallmodesl,andthatthemodeliscritical(gapless)ifε (l)vanishesforsomel. Weshallsupposeinwhatfollowsthat N thesystemisinapureenergyeigenstate |K(cid:105)≡a† ···a† |0(cid:105), K={k ,...,k }⊂{0,...,N−1}, (2) (cid:98)k1 (cid:98)kM 1 M where|0(cid:105)isthevacuum,consistingofMfermionswithmomenta2πk /N. Weshallbeinterestedinstudyingtheentanglement j properties of a subset of sites A≡{x ,...,x }⊂{0,...,N−1} with respect to the whole system when the latter is in the 1 L purestate|K(cid:105). Asiswellknown,thesepropertiesareencodedinthereduceddensitymatrixρ =tr ρ,whereρ ≡|K(cid:105)(cid:104)K| A B andB={0,...,N−1}−A. AsmentionedintheIntroduction,thedegreeofentanglementisusuallymeasuredusingtheRényi entanglemententropyS (A)≡(1−α)−1logtr(ρα)(withα >0). Oneofthemostefficientwaysofcomputingthisentropyis α A toexploittheconnectionbetweenthereduceddensitymatrixρ andthecorrelationmatrixC ,definedby A A (C ) =(cid:104)K|a† a |K(cid:105), 1(cid:54) j,k(cid:54)L. (3) A jk xj xk ThismatrixisobviouslyHermitian,witheigenvaluesν ,...,ν lyingintheinterval[0,1]. Moreover,sincethestate|K(cid:105)is 1 L determinedbytheconditionsa†|K(cid:105)=0fork∈K anda |K(cid:105)=0fork(cid:54)∈K,theexpectationvalue(cid:104)K|a†a |K(cid:105)vanishesfor (cid:98)k (cid:98)k (cid:98)j(cid:98)k k∈/K andequalsδ fork∈K. FromthisfactandEq.(1)weimmediatelyobtainthefollowingexplicitexpressionforthe jk matrixelementsofthecorrelationmatrixC : A 1 (CA)jk= ∑e−2πi(xj−xk)l/N, 1(cid:54) j,k(cid:54)L. (4) N l∈K AsfirstshowninRefs.4,24,thereduceddensitymatrixρ factorsasthetensorproductρ =(cid:78)L ρ(l),whereeachρ(l)isa A A l=1 A A 2×2matrixwitheigenvaluesν and1−ν. Inparticular,thespectrumofρ isthesetofnumbers l l A L ρA(ε1,...,εL)=∏(cid:2)νlεl(1−νl)1−εl(cid:3), εl ∈{0,1}. (5) l=1 SincetheRényientropyS isadditive,itfollowsthat α L L S (A)= ∑S (cid:0)ρ(l)(cid:1)=(1−α)−1∑log(cid:0)να+(1−ν)α(cid:1). (6) α α A l l l=1 l=1 NotethatthelattermethodforcomputingS (A)iscomputationallyveryadvantageous,sinceitisbasedonthediagonalization α oftheL×LmatrixC asopposedtodirectdiagonalizationofthe2L×2L matrixρ . A A Asexplainedabove,itisofgreatinteresttodeterminethe(leading)asymptoticbehaviouroftheentanglemententropyS (A) α asthesizeLofthesubsystemAtendstoinfinity. Tothisend,notefirstofallthatthematrixC isToeplitz(i.e.,(C ) depends A A jk onlyonthedifference j−k)providedthatthesubsystemAunderconsiderationisasingleblock,i.e.,asetofconsecutivesites. LetusfurtherassumethatEq.(4)hasawell-definedlimitasN→∞withLfixed,inthesensethatthereexistsapiecewise smoothdensityfunctionc(p)suchthat(C ) →(2π)−1(cid:82)2πc(p)e−i(j−k)pdpinthislimit. AsfirstshownbyJinandKorepin5, A jk 0 itisthenpossibletoapplyaparticularcaseoftheFisher–Hartwigconjecture23 provedbyBasor25 toderiveanasymptotic 2/12 formulaforthecharacteristicpolynomialofthecorrelationmatrixC ,andhencefortheentanglemententropyS (A)(seealso A α Refs.20,21,26). However,whenthesubsystemAisnotasingleblockitisclearfromEq.(4)thatC isnotaToeplitzmatrix,and A thereforethemethodjustoutlinedcannotbeusedtoderivetheasymptoticbehaviourofS (A)forlargeL. Itshouldalsobe α stressedthattheasymptoticresultinRef.5 isonlyvalidforN(cid:29)L(cid:29)1(i.e.,foraninfinitechain),sincetheN→∞limitwith LfixedistakenbeforelettingL→∞. Inparticular,theasymptoticbehaviourofS (A)whenN→∞withL/N→γ ∈(0,1) α x cannotbedirectlyinferredfromthelatterresult. Asweshallexplainshortly,thesedrawbackscanbeovercomethroughtheuse ofadualityprinciplethatweshallintroducebelow. Thedualcorrelationmatrix Westartbydefiningtheprojectionoftheoperatora†ontothesetL(H )oflinearoperatorsfromtheHilbertspaceH ofthe (cid:98)j A A subsystemAintoitselfintheobviousway,namely(cf.Eq.(1)) 1 a† = √ ∑e2πijl/Na†, (7) (cid:98)A,j N l l∈A andsimilarlyfora . Weshallalsodenotebya† ,a thecorrespondingprojectionsontoL(H ),sothata =a +a , (cid:98)A,j (cid:98)B,j (cid:98)B,j B (cid:98)j (cid:98)A,j (cid:98)B,j a(cid:98)†j =a(cid:98)A†,j+a(cid:98)B†,j.WethendefinethedualcorrelationmatrixC(cid:98)AastheM×Mmatrixwithelements (C(cid:98)A)lm=(cid:10)0(cid:12)(cid:12)a(cid:98)A,kla(cid:98)A†,km(cid:12)(cid:12)0(cid:11), 1(cid:54)l,m(cid:54)M. (8) ThedualcorrelationmatrixC(cid:98)BofthecomplementarysetBisdefinedsimilarly. TheanalogueofthematrixC(cid:98)Aforcontinuous systems,usuallycalledtheoverlapmatrix,wasoriginallyintroducedbyKlich27andhasbeenextensivelyusedintheliterature (see,e.g.,Ref.28). Fromthedefinition(7)oftheprojectedoperatorsa† weimmediatelyobtaintheexplicitformula (cid:98)A,j 1 (C(cid:98)A)lm= ∑e−2πi(kl−km)j/N, 1(cid:54)l,m(cid:54)M. (9) N j∈A ComparisonwithEq.(4)showsthatC(cid:98)AisobtainedfromCAbyexchangingtherolesplayedbythesitesxj∈Aandtheexcited modes k ∈K, which justifies the term “dual correlation matrix”. We shall show in what follows that this duality can be l successfullyexploitedtoobtaintheasymptoticbehaviourofS (A)insituationsinwhichtheusualapproachbasedonthe α correlationmatrixC isnotfeasible. A ThematrixC(cid:98)A isclearlyHermitianandpositivesemidefinite,sinceforallz1,...,zM ∈Cwehave∑Ml,m=1(C(cid:98)A)lmz∗lzm= (cid:13)(cid:13)(cid:0)∑Ml=1zma(cid:98)A†,km(cid:1)|0(cid:105)(cid:13)(cid:13)2.Thustheeigenvaluesν(cid:98)1,...,ν(cid:98)MofC(cid:98)Aarenonnegative.Usingtheidentities(cid:104)0|OAOB(cid:48)|0(cid:105)=(cid:104)0|OB(cid:48)OA|0(cid:105)= 0,whereOAandOB(cid:48) arelinearoperatorsrespectivelysupportedonAandB,itisstraightforwardtocheckthatC(cid:98)B=1lM−C(cid:98)A. SinceC(cid:98)B is also positive semidefinite, from the previous relation it follows that ν(cid:98)i ∈[0,1] for all i=1,...,M. Moreover, the Hermitian character of C(cid:98)A implies that there exists a unitary M×M matrix U ≡(ulm)1(cid:54)l,m(cid:54)M such that UC(cid:98)AU† = diag(ν(cid:98)1,...,ν(cid:98)M), and henceUC(cid:98)BU† =1l−UC(cid:98)AU† =diag(1−ν(cid:98)1,...,1−ν(cid:98)M). We then define the corresponding rotated operatorsc(cid:98)l =∑Mm=1ulma(cid:98)km (1(cid:54)l(cid:54)M),whichtogetherwiththeiradjointssatisfytheCARbytheunitarityofU. Weshall alsoneedtheprojectionsofthelatteroperatorsontothespacesL(H )andL(H ),namely A B M M c = ∑ u a , c = ∑ u a =c −c , (10) (cid:98)A,l lm(cid:98)A,km (cid:98)B,l lm(cid:98)B,km (cid:98)l (cid:98)A,l m=1 m=1 andsimilarlyfortheiradjoints. Fromtheabovedefinitionsitfollowsthatthevacuumcorrelatorsoftheoperators{c ,c† } (cid:98)A,l (cid:98)A,l and{c ,c† }aregivenby (cid:98)B,l (cid:98)B,l (cid:10)0(cid:12)(cid:12)c(cid:98)A,lc(cid:98)A†,m(cid:12)(cid:12)0(cid:11)=ν(cid:98)lδlm, (cid:10)0(cid:12)(cid:12)c(cid:98)B,lc(cid:98)B†,m(cid:12)(cid:12)0(cid:11)=(1−ν(cid:98)l)δlm, (11) andhence(cid:13)(cid:13)c(cid:98)A†,l|0(cid:105)(cid:13)(cid:13)2=ν(cid:98)l, (cid:13)(cid:13)c(cid:98)B†,l|0(cid:105)(cid:13)(cid:13)2=1−ν(cid:98)l. FollowingRef.27, wenotethatthestate|φ(cid:105)=c(cid:98)1†···c(cid:98)M†|0(cid:105)actuallydiffers from|K(cid:105)byanirrelevantphase,sincebydefinitionoftheoperatorsc wehave (cid:98)l M (cid:18) (cid:19) |φ(cid:105)= ∑ u∗ ···u∗ a† ···a† |0(cid:105)= ∑ (−1)σu∗ ··· u∗ a† ···a† |0(cid:105)=detU∗|K(cid:105), m1,...,mM=1 1m1 M,mM(cid:98)km1 (cid:98)kmM σ∈SM 1σ1 M,σM (cid:98)k1 (cid:98)kM 3/12 where (−1)σ denotes the sign of the permutation σ. The latter relation implies that |K(cid:105)(cid:104)K|=|φ(cid:105)(cid:104)φ|, a fact that can be exploited in order to derive an expression for the entanglement entropy Sα(A). To this end, for ν(cid:98)l (cid:54)=0,1 we define the operatorsd(cid:98)A†,l =c(cid:98)A†,l/(cid:112)ν(cid:98)l, d(cid:98)B†,l =c(cid:98)B†,l/(cid:112)1−ν(cid:98)l, sothatbyEq.(11)thestates|1(cid:105)A,l ≡d(cid:98)A†,l|0(cid:105), |1(cid:105)B,l ≡d(cid:98)B†,l|0(cid:105)areproperly normalized. Ontheotherhand,whenν(cid:98)l=0thestatec(cid:98)l†|0(cid:105)=c(cid:98)B†,l|0(cid:105)issupportedonBbyEq.(11),andisnormalized,sincethe operatorsc(cid:98)l,c(cid:98)l†obeytheCAR.Henceinthiscasewesimplysetd(cid:98)B†,l =c(cid:98)B†,l =c(cid:98)l†,|1(cid:105)B,l =d(cid:98)B†,l|0(cid:105). Similarly,whenν(cid:98)l =1we defined(cid:98)A†,l =c(cid:98)A†,l =c(cid:98)l†,|1(cid:105)A,l =d(cid:98)A†,l|0(cid:105),andthepreviousdefinitionswethushavec(cid:98)l†=(cid:112)ν(cid:98)l d(cid:98)A†,l+(cid:112)1−ν(cid:98)l d(cid:98)B†,l (1(cid:54)l(cid:54)M), and therefore |φ(cid:105)=(cid:78)Ml=1(cid:16)(cid:112)ν(cid:98)l |1(cid:105)A,l|0(cid:105)B,l+(cid:112)1−ν(cid:98)l |0(cid:105)A,l|1(cid:105)B,l(cid:17), where |0(cid:105)A,l, |0(cid:105)B,l denote the vacuum state in the l-th mode(withrespecttothec† operators)supportedrespectivelyonAorB. Usingtheidentity|K(cid:105)(cid:104)K|=|φ(cid:105)(cid:104)φ|andtracingover (cid:98)m thedegreesoffreedomofthesubsystemBweeasilyarriveatthefundamentalformula (cid:79)M (cid:16) (cid:17) ρA= ν(cid:98)l|1(cid:105)A,l(cid:104)1|A,l+(1−ν(cid:98)l)|0(cid:105)A,l(cid:104)0|A,l . (12) l=1 Inparticular,thespectrumofthematrixρ isthesetofnumbers A M ρA(ε1,...,εM)=∏(cid:2)ν(cid:98)lεl(1−ν(cid:98)l)1−εl(cid:3), εl ∈{0,1}, (13) l=1 up to zero eigenvalues. From the additivity of the Rényi entropy and Eq. (12) or (13) it follows that the entanglement entropyS (A)isgivenby α M Sα(A)=(1−α)−1∑log(cid:0)ν(cid:98)lα+(1−ν(cid:98)l)α(cid:1), (14) l=1 whichcanbeinterpretedasthedualofEq.(6). Thedualityprinciple Aswehaveseenintheprevioussubsection,theRényientanglemententropyS (A)canbecomputedintwoequivalentways, α usingthe“coordinate”correlationmatrixCAandits“dual”C(cid:98)A(cf.Eqs.(6)-(14)). Thisfactstronglysuggeststheexistenceofa deeperdualityprinciplethatappliestothereduceddensitymatrixρ itself,asevidencedbyEqs.(5)-(13). Toformulatethis A principle,weshallintroducethemoreprecisenotationρ (K)todenotethereduceddensitymatrixofthesubsystemAwhen A thewholesystemisinthepureenergyeigenstate|K(cid:105)givenbyEq.(2). LetspecT standforthespectrumofthematrixT,i.e., thesetofitseigenvalues,eachcountedwithitsrespectivemultiplicity. Likewise,weshalldenotebyspec ρ thespectrumofa 0 (cid:0) (cid:1) densitymatrixρ excludingitszeroeigenvalues,i.e.,spec ρ =spec ρ| .Weshallthensaythattwodensitymatricesρ 0 (kerρ)⊥ i (i=1,2)aresimilaruptozeroeigenvaluesifspec ρ =spec ρ ,i.e.,ρ andρ havethesamenonzeroeigenvalueswiththe 0 1 0 2 1 2 samemultiplicities. Wearenowreadytostatethefollowingfundamentalresult: Theorem1. Thereduceddensitymatricesρ (K)andρ (A)aresimilaruptozeroeigenvalues. A K Proof. Indeed,byEqs.(5)-(13)thespectrumofρ (K)excludingthezeroeigenvaluescanbewritteninthetwoequivalent A ways (cid:26) L (cid:27) (cid:26) M (cid:27) spec0(cid:0)ρA(K)(cid:1)= ∏νlεl(1−νl)1−εl |εl∈{0,1}, νl∈/{0,1} = ∏ν(cid:98)mεm(1−ν(cid:98)m)1−εm|εm∈{0,1}, ν(cid:98)m∈/{0,1} . (15) l=1 m=1 Let us denote by CA(K) and C(cid:98)A(K) the correlation matrix (4) and its dual version (9). We then have C(cid:98)A(K)=CK(A), CA(K)=C(cid:98)K(A), and consequently the sets {νl}Ll=1 and {ν(cid:98)m}Mm=1 are interch(cid:0)anged (cid:1)by the du(cid:0)ality tra(cid:1)nsformation A↔K. ApplyingEq.(15)tothereduceddensitymatrixρ (A)weconcludethatspec ρ (K) =spec ρ (A) ,asclaimed. K 0 A 0 K (cid:0) (cid:1) IfSisanyentropyfunctional,fromnowonweshallusethemoreprecisenotationS(A;K)=S ρ (K) . Obviously,from A theShannon–Khinchinaxiomsitfollowsthattwodensitymatriceswhicharesimilaruptozeroeigenvaluesnecessarilyhave thesameentropy. Fromthisfactandtheprevioustheoremwecanimmediatelydeducetheimportantdualityprinciple S(A;K)=S(K;A), (16) validforanyentropyfunctionalS. 4/12 Asafirstapplicationofthisgeneralprinciple,weshallrigorouslyderiveanasymptoticexpressionfortheRényientanglement entropyofasubsystemAconsistingofr>1disjointblocksofconsecutivespinswhenthesetK ofexcitedmomentaisasingle setofMconsecutiveintegers,validinthelimitN(cid:29)M(cid:29)1. Moreprecisely,letA=(cid:83)r [U,V),K=[P,Q),where[U,V) i=1 i i i i denotesthesetofallintegerslsuchthatU (cid:54)l<V (sothatthecardinalof[U,V)isV −U),andsimilarlyfor[P,Q). Wefirst i i i i i i letN→∞withMfixedandassumethatthefollowinglimitsexist: 2πU 2πV i i lim ≡u , lim ≡v , i i N→∞ N N→∞ N withu,v ∈[0,2π],u −v >0,v −u <2π. WeshallbeinterestedintheasymptoticbehavioroftheRényientropyS i i i+1 i r 1 α asM→∞. ThustheproblemathandispreciselythedualoftheonesolvedinRef.21 withthehelpoftheFisher–Hartwig conjecture. Themainresultofthelatterreferencecanberecastinthepresentcontextastheasymptoticformula (cid:18) s (cid:19) S (cid:0)[U,V);(cid:83)s [P,Q )(cid:1)∼b slogL+∑log(cid:0)2sin(cid:0)qj−pj(cid:1)(cid:1)+logf(p,q) +sc , (17) α j=1 j j α 2 α j=1 where p ≡ lim(2πP/N),q ≡ lim(2πQ /N), j j j j N→∞ N→∞ 1(cid:18) 1(cid:19) 1 (cid:90) ∞(cid:18) 1−α2 (cid:19)dt sin(cid:0)qj−pi(cid:1)sin(cid:0)pj−qi(cid:1) b = 1+ , c = αcsch2t−cschtcsch(t/α)− e−2t , f(p,q)= ∏ 2 2 α 6 α α 1−α 0 6α t 1(cid:54)i<j(cid:54)ssin(cid:0)pj−2pi(cid:1)sin(cid:0)qj−2qi(cid:1) (18) andthe∼notationmeansthatthedifferencebetweentheLHSandtheRHStendsto0asL→∞. Fromthedualityrelation(16) andEqs.(17)-(18)itthenfollowsthatwhenM→∞wehave (cid:20) r (cid:21) S (cid:0)(cid:83)r [U,V);[P,Q)(cid:1)=S (cid:0)[P,Q);(cid:83)r [U,V)(cid:1)∼b rlogM+∑log(cid:0)2sin(cid:0)vi−ui(cid:1)(cid:1)+logf(u,v) +rc . (19) α i=1 i i α i=1 i i α 2 α i=1 Takingintoaccountthat f(u,v)=1whenr=1,fromthepreviousformulawededucethat r S (cid:0)(cid:83)r [U,V);[P,Q)(cid:1)∼∑S (cid:0)[U,V);[P,Q)(cid:1)−I (u,v), with I (u,v)≡−b logf(u,v), (20) α i=1 i i α i i α α α i=1 wherethelasttermcanbenaturallyinterpretedasanasymptoticapproximationtothemutualinformationsharedbytheblocks [U ,V ),...,[U ,V ). 1 1 r r ItisimportanttokeepinmindthelimitingprocessleadingtoEq.(19)inordertocorrectlyassessitslimitofvalidity. For instance,usingtheconnectionbetweenone-dimensionalcriticalsystemsand1+1dimensionalCFTsitwasconjecturedin Ref.22 thattheasymptoticbehaviorofS isgiven(inournotation)by α S (cid:0)(cid:83)r [U,V);[P,Q)(cid:1)∼b (cid:20)rlog(cid:18)Nsin(cid:18)π M(cid:19)(cid:19)+∑r log(v −u)+logf(∞)(u,v)(cid:21)+rc , (21) α i=1 i i α π N i i α i=1 where f(∞)(u,v)istheproductofcrossratios (v −u)(u −v) f(∞)(u,v)= ∏ j i j i . (22) (u −u)(v −v) 1(cid:54)i<j(cid:54)r j i j i TheapparentdiscrepancybetweenthelatterformulasandEqs.(18)-(19)iseasilyexplainedtakingintoaccountthatthelimiting processinthelatterreferenceisthedualofthepresentone,namelyN→∞withfixedU,V and2πP/N→p,2πQ/N→q. In i i otherwords,Eqs.(18)-(19)applywhenN(cid:29)M(cid:29)1andarbitraryL<N,whileEqs.(21)-(22)arevalidforN(cid:29)L(cid:29)1and arbitraryM<N. Itisalsoobviousthatbothapproachescoincideinthe(ratheruninteresting)caseinwhichbothM/N and L/N tendtozero. Ontheotherhand,itshouldbeapparentthatneitherEqs.(18)-(19)nor(21)-(22)arevalidinthegeneral situationinwhichbothL/N andM/N tendtoanonzerolimitasN→∞. Infact,itisclearapriorithatnoneoftheseformulas canholdinthelatterrange,sincetheyarenotconsistentwiththeinvarianceundercomplementsidentityS(A;K)=S(Ac;K) anditsdualconsequenceS(A;K)=S(A;Kc),whereAcandKcrespectivelydenotethecomplementsofAandK withrespectto theset{0,...,N−1}. 5/12 Our next objective is to find an extension of Eqs. (19) and (21) valid in the general case in which both γ and γ ≡ x p lim M/N tend to a nonzero limit as N →∞. To this end, consider first the simplest case in which r =s=1. By N→∞ translationinvarianceandcriticality,asN→∞wemusthaveS ([U,V);[P,Q))∼b logN+σ (γ ,γ ),whereγ =(V−U)/N, α α α x p x γ =(Q−P)/N and σ satisfies: i) σ (γ ,γ )=σ (γ ,γ ) (on account of the duality principle (16)), ii) σ (γ ,γ )= p α α x p α p x α x p (cid:0) (cid:1) σ (1−γ ,γ ) (by the invariance of the entropy under complements), iii) σ (γ ,γ )=b log 2γ sin(πγ ) +c +o(1), α x p α x p α x p α with lim o(1)=0 (by Eq. (21) with r=1). (In fact, combining conditions i) with ii) and iii) it immediately follows γx→0 (cid:0) (cid:1) thatσ (γ ,γ )=σ (γ ,1−γ )andσ (γ ,γ )=b log 2γ sin(πγ ) +c +o(1),whereo(1)→0asγ →0.)Obviously,the α x p α x p α x p α p x α p simplestfunctionsatisfyingthepreviousrequirementsisσ (γ ,γ )=b log(cid:0)2sin(πγ )sin(πγ )(cid:1)+c ,obtainedfromEq.(21) α x p α π x p α withr=1bythereplacementπγ (cid:55)→sin(πγ ). Numericalcalculationsshowthatforallα >0thecorrectasymptoticformula x x forS ([U;V);[P,Q))isindeedthesimplestone,namely α (cid:18) (cid:19) 2N S ([U,V);[P,Q))∼b log sin(πγ )sin(πγ ) +c (23) α α x p α π (see,e.g.,Fig.1(a)forthemost“unfavourable”caseγ =γ =1/2). Thisconclusionisalsoinagreementwiththeanalogous x p resultinRef.29 fortheXX model. Infact,wefoundtheleadingcorrectiontotheapproximation(23)tobemonotonicinN andO(N−2)forα=1,andO(cid:0)cos(2πγ γ N(cid:1)N−2/α)forα>1(cf.Fig.1). Thisbehaviourqualitativelyagreeswiththeresults x p ofRef.30 fortheerroroftheJin–KorepinasymptoticformulafortheRényientanglemententropyofthegroundstateofthe infiniteXX chain(Eq.(23)withsin(πγ )replacedbyπγ ). Ontheotherhand,inthecase0<α <1(whichwasnotaddressed x x inthelatterreference),ournumericalcalculationssuggestthatthecorrectiontoEq.(23)ismonotonicandO(N−2). 0.05 1.5×10–6 0.04 0.002 10–6 0 0.03 ε –0.002 ε 0.02 0.5×10–6 100 110 120 130 140 150 0.01 0.00 0 600 800 1000 1200 1400 1600 1800 2000 600 700 800 900 (a) N (b) N Figure1. Differenceε betweentheexactvalueoftheRényientropy,computedviaEq.(6)bynumericaldiagonalizationof thecorrelationmatrix(4),anditsasymptoticapproximation(23)for(a)γ =γ =1/2and(b)γ =1/8,γ =1/4. Inpanel(a) x p x p wehaveshownthecases(bottomtotop)α =3/5,2/3,3/4,1(vonNeumannentropy)andα =2(inset),whilepanel(b) depictsthecasesα =2,5/2,3(bottomtotop,withthehorizontalaxisdisplacedrespectivelyby0.013and0.035inthelast twocasestoavoidoverlap). ThesolidredlinesrepresentthecurvesprovidingthebestfitsofthedatatothelawsaN−2(main panel(a))andaN−2/αcos(2πγ γ N)(insetofpanel(a)andpanel(b)). x p Atthispoint,itisverynaturaltoassumethatEq.(20)anditsdualarevalidforallvaluesoftheparametersγ ,γ ∈(0,1), x p andnotjustforγ (cid:28)1orγ (cid:28)1,respectively. ThelatterassumptionandEq.(23)thusleadtotheasymptoticformulas p x S (cid:0)(cid:83)r [U,V);[P,Q)(cid:1)∼b (cid:20)rlog(cid:18)2N sin(πγ )(cid:19)+∑r logsin(cid:0)vi−ui(cid:1)(cid:21)−I (u,v)+rc , (24) α i=1 i i α π p 2 α α i=1 S (cid:0)[U,V);(cid:83)s [P,Q)(cid:1)∼b (cid:20)slog(cid:18)2N sin(πγ )(cid:19)+∑s logsin(cid:0)qi−pi(cid:1)(cid:21)−I (p,q)+sc . (25) α i=1 i i α π x 2 α α i=1 Infact, thevalidityofthelatterequationscanbeestablishedbynotingthatonecangofromEq.(17), whichholdsforan infinite chain, to its analogue for a finite chain by the usual procedure18,29 of replacing the “arc distance” L by the chord length(N/π)sin(πL/N)=(N/π)sin(πγ ).InthiswayEq.(17)immediatelyyieldsEq.(25),whichimpliesitscounterpart(24) x bythedualityprinciple(16). Again,ournumericalcalculationsforseveralblockconfigurationsandawiderangeofvaluesoftheRényiparameterα fullycorroboratethevalidityofEqs.(24)-(25)(see, e.g., Fig.2). Moreprecisely, ournumericalanalysissuggeststhatfor 6/12 sufficientlylargeN theerrorterminthelatterequationsbehavesas f(N)O(N−min(2,2/α)),where f(N)isaperiodicfunction ofN. Inparticular,theerrortermmaynotbemonotonicinN evenforα (cid:54)1,incontrastwithwhathappensinther=s=1 case. TheaboveresultsareinagreementwiththosereportedinRef.16 forthe(infinite)XY chainanditscorrespondingfree fermionmodelwithα >1,r=2ands=1. 9 0.04 8 0.02 7 α S ε 0 6 5 –0.02 4 –0.04 2500 3000 3500 2500 3000 3500 (a) N (b) N Figure2. (a)ExactRényientropyS (bluedots)vs.itsasymptoticapproximation(24)(continuousredline)forasubsystem α consistingofthreeequispacedblocksofequallengthN/12whenthewholesystem’sstate(2)ismadeupofasequenceof consecutiveexcitedmodesoflengthN/12(r=3,s=1,γ =1/4,γ =1/12). ThevaluesoftheRényiparameterα x p consideredare(fromtoptobottom)1/2,3/5,3/4,1,3/2,2and3. (b)Differenceε betweentheexactentropyS andits 3 approximation(24)inthepreviousconfigurationasafunctionofthenumberoffermionsN. Thecontinuousredlineisthe graphofthefunction f(N)N−2/3,with f(N)=−5.54238cos(ν N)−0.742586cos(3ν N)−0.39794cos(5ν N)and 0 0 0 ν =2πγ γ /r=π/72. 0 x p Multi-blockentanglemententropy: conjectureforthegeneralcase Weshalladdressinthissectionthegeneralproblem,inwhichbothsetsAandK consistofseveralblocksofconsecutivesites ormodes,respectively. Tothebestofourknowledge,anasymptoticformulafortheentanglemententropyinthiscasehas notpreviouslyappearedintheliterature. Asexplainedabove,themaindifficultyisnowthatneitherthecorrelationmatrixC A noritsdualC(cid:98)A areToeplitz,sothatthestandardprocedurebasedontheuseoftheFisher–Hartwigconjecturetoobtainan asymptoticformulaforthecharacteristicpolynomialofthecorrelationmatrixCA (orofitsdualC(cid:98)A)isnotapplicable. Our approachforderivingaplausibleconjecturefortheasymptoticbehaviorofS inthegeneralcaseconsideredinthissubsection α reliesinsteadonthegeneraldualityprincipleestablishedintheprevioussection(cf.Theorem1andEq.(16)). Inaddition,we shallmakethenaturalassumptionthatwhenthedistancebetweentheblocksA ismuchlargerthantheirlengths(i.e.,when i min1(cid:54)i(cid:54)r(ui+1−vi)(cid:29)max1(cid:54)i(cid:54)r(vi−ui),whereur+1≡u1+2π)theentanglemententropyisasymptotictothesumofthe singleblockentropiesS (A;K). Themotivationbehindthisassumptionisthatwhentheblocksarefaraparttheirmutual α i influenceshouldbenegligible,andtheRényientropyisofcourseadditiveoverindependentevents. ThesimplestasymptoticformulasatisfyingtheaboveassumptionisthetrivialoneSα(A;K)∼∑ri=1Sα(Ai;K). However, thelatterformulacannotbecorrect,sinceitviolatesthedualityprinciple. Theobviouswayoffixingthisshortcomingwouldbe toaddthedualterm∑sj=1Sα(A;Kj)totheRHS,buttheresultingformulaviolatestheaboveassumption. Ontheotherhand, sincebyEq.(20)∑sj=1Sα(A;Kj)∼∑ri=1∑sj=1Sα(Ai;Kj)−sIα(u,v),andIα(u,v)∼0whentheblocksincoordinatespaceare farapart,theasymptoticformula r s r s S (A;K)∼∑S (A;K)+∑S (A;K )−∑∑S (A;K ) (26) α α i α j α i j i=1 j=1 i=1j=1 satisfiestheabovefundamentalassumption. Thisrelationisalsoclearlyconsistentwiththedualityprinciple(16),sincethe RHSofEq.(26)isinvariantundertheexchangeofthesetsAandK onaccountofTheorem1. Wearethusledtoconjecture thatwhenN→∞theRényientropyofaconfigurationwithrblocksA incoordinateandsblocksK inmomentumspace i j satisfiesthepreviousrelation. UsingEqs.(20),itsdualandEq.(23)weimmediatelyarriveattheclosedasymptoticformula S (A;K)∼rs(cid:18)b log(cid:18)2N(cid:19)+c (cid:19)+s(cid:18)b ∑r logsin(cid:0)vi−ui(cid:1)−I (u,v)(cid:19)+r(cid:18)b ∑s logsin(cid:0)qi−pi(cid:1)−I (p,q)(cid:19). (27) α α π α α 2 α α 2 α i=1 i=1 7/12 (a) (b) Figure3. AsymmetricblockconfigurationdiscussedinFig.4(b)in(a)coordinatespace,(b)momentumspace(thethick greenlinesrepresenttheblocks,andthereddotsarethetwoidentifiedendpointsofthechain). The latter equation is manifestly consistent with the duality principle stated in Theorem 1, as expected from the previous remark. ItisalsoapparentthatEq.(27)reducestoEq.(24)or(25)respectivelyfors=1orr=1,astheasymptoticmutual informationI vanishesforasingleblock. Moreover,itisstraightforwardtoexplicitlycheckthatwhentheblocksincoordinate α spacearefaraparttheRHSreducestothesumoftheasymptoticapproximations(25)tothesingle-blockentropiesS (A;K), α i sinceI (u,v)∼0inthislimit. (Byduality,asimilarremarkappliestothecaseinwhichtheblocks[P,Q )inmomentum α j j spacearefarapartfromeachother.) Finally,itisimmediatetocheckthatEq.(27)satisfiestheinvarianceundercomplements identity. Wehaveverifiedthroughextensivenumericalcalculationswithawiderangeofconfigurationsincoordinateandmomentum space that when N (cid:29)1 Eq. (27) is correct. In fact, for symmetric configurations (consisting of equally spaced blocks of thesamelength,bothincoordinateandmomentumspace)theerrorterminthelatterequationbehavesas f(N)N−min(2,2/α), where f isagainaperiodicfunction. Moreprecisely(forrationalγ andγ ), f(N)iswellapproximatedbyatrigonometric x p polynomial∑kkm=a0xakcos(kνN)withsmallkmax(independentofN),wherethemainfrequencyνistheproductofν0≡2πγxγp/rs withasimplefractionthatcanbecomputedfromtheconfigurationparametersr,s,γ ,γ . Thebehavioroftheerrorisvery x p similarinnon-symmetricconfigurations,exceptthatinsomecasesitappearstodecayfasterthanN−2for0<α <1. Asan example,inFig.4wepresentourresultsforthreedifferentconfigurationswith(r,s)=(3,2),(7,4),(10,5). Moreprecisely,the firstandlastoftheseconfigurationsaresymmetric,whilethemiddleoneis(slightly)asymmetric,asdetailedinFig.3. Ascan beseenfromFigs.4(d)-(f),theerrorinEq.(27)behavesinthesethreecasesasdescribedabove,wherethecoefficientsa of k thetrigonometricpolynomial f(N)anditsfundamentalfrequencyν arelistedinTable1. Case k (a ,...,a ) ν ν max 0 kmax 0 (d) 2 (−438.485,105.29,66.716) π/18 ν 0 (e) 14 (−21790.1,76.0009,1602.85,154.097,5143.99,397.121,416.007,1950.55, π/112 2ν /7 0 4556.52,156.444,756.382,168.572,2164.74,232.817,2661.63) (f) 9 (0,−852.969,0,−202.359,0,−99.4396,0,−57.2755,0,−55.2294) π/200 ν 0 Table1. Coefficientsak andfundamentalfrequencyν ofthetrigonometricpolynomial f(N)=∑kkm=a0xakcos(kνN)intheerror ofEq.(27)forcases(d)-(f)inFig.4. Itshouldbenotedthattheasymptoticformula(27),whichwehavenumericallycheckedforafinitechain,easilyyieldsasa (cid:0) (cid:1) limitingcaseananalogousformulaforaninfinitechain. Indeed,ifinEq.(27)weletγ tendto0wehavesin (v −u)/2 (cid:39) x i i π(V −U)/N, andsimilarlyfortheotherargumentsofthesinefunctionsappearingintheasymptoticmutualinformation i i termI (u,v). InthiswayweeasilyarriveattheanalogueofEq.(27)foraninfinitechain,namely α S(∞)∼sb log(cid:20)∏r (V −U)· ∏ (Vj−Ui)(Uj−Vi)(cid:21)+r(cid:18)b ∑s logsin(cid:0)qi−pi(cid:1)−I (p,q)(cid:19)+rs(b log2+c ). (28) α α i i (U −U)(V −V) α 2 α α α i=1 1(cid:54)i<j(cid:54)r j i j i i=1 Tothebestofourknowledge,thisgeneralasymptoticformulahasnotpreviouslyappearedintheliterature. Notealsothat fors=1(i.e.,whenthereisasingleblockofexcitedmomenta)Eq.(28)impliestheasymptoticexpressionforthemutual informationofrblocksincoordinatespaceconjecturedinRef.22. Fromtheasymptoticapproximation(27)(oritsequivalentversionEq.(26))onecanalsodeducearemarkableexpression forthe(asymptotic)mutualinformationofrblocksA ≡[U,V)(1(cid:54)i(cid:54)r)inpositionspacewhenthechainisinanenergy i i i eigenstate|K(cid:105)madeupofsblocksK ≡[P,Q )(1(cid:54) j(cid:54)s)ofexcitedmomentummodes,definedasI (cid:0)A ,...,A ;K(cid:1)≡ j j j α 1 r ∑ri=1Sα(cid:0)Ai;K(cid:1)−Sα(cid:0)(cid:83)ri=1Ai;K(cid:1).Indeed,usingEqs.(20)and(26)weimmediatelyobtaintheasymptoticformula s (cid:20) r (cid:21) s I (cid:0)A ,...,A ;K(cid:1)∼ ∑ ∑S (cid:0)A;K (cid:1)−S (cid:0)(cid:83)r A;K (cid:1) ∼ ∑I (u,v)=sI (u,v). (29) α 1 r α i j α i=1 i j α α j=1 i=1 j=1 Thus(inthelargeN limit)themulti-blockmutualinformationI issimplystimesthemutualinformationwhenthechain’s α state|K(cid:105)consistsofasingleblockofconsecutivemomenta. Inparticular,weseethatI dependsonlyonthetopologyof α 8/12 22 120 20 70 110 18 100 60 α16 α α 90 S 14 S 50 S 80 12 70 10 40 60 8 50 1000 1500 2000 2500 3000 3500 4000 2800 3000 3200 3400 3600 3800 4000 2000 2500 3000 3500 4000 (a) N (b) N (c) N –0.00003 0.0000 0.3 –0.0005 –0.00004 –0.0010 0.2 0.1 –0.0015 ε–0.00005 ε ε 0.0 –0.0020 –0.1 –0.00006 –0.0025 –0.2 –0.0030 –0.00007 –0.0035 –0.3 2860 2880 2900 2920 2940 2960 2980 3000 2800 3000 3200 3400 3600 3800 4000 3600 3800 4000 4200 4400 (d) N (e) N (f) N Figure4. (a)-(c): exactRényientropyS (bluedots)anditsasymptoticapproximation(27)(continuousredline)forα=1/2, α 3/5,3/4,1,3/2,2,3(toptobottom)in(a)asymmetricconfigurationwithr=3,s=2,γ =1/2,γ =1/3,(b)anasymmetric x p configurationwithr=7,s=4,γ =1/2,γ =1/4,and(c)asymmetricconfigurationwithr=10,s=5,γ =1/2,γ =1/4. x p x p (d)-(f)Differenceε betweentheexactentropyS anditsapproximation(27)fortheaboveconfigurationsand(d)α =1/2, α (e)α =1(vonNeumannentropy),and(f)α =2. Theredlinesrepresentthecorrespondingcurves f(N)N−min(2,2/α), with f(N)=∑kkm=a0xakcos(kνN)giveninTable1. thestate|K(cid:105)(i.e.,thenumberofblocksofexcitedmomenta),notonitsgeometry(i.e.,theparticulararrangementandthe lengthsoftheseblocks). OnecouldalsodefinethemutualinformationofsblocksofexcitedmomentaK ≡[P,Q )(1(cid:54) j(cid:54)s) j j j for a fixed configuration A≡(cid:83)r A in position space. It easily follows from Eq. (29) and the duality principle that this i=1 i mutualinformationisasymptotictorI (p,q). Ofcourse,ananalogousformulashouldholdfortheinfinitechainreplacing α thefunctionI byitsN→∞limitI(∞)(U,V)=b logf(∞)(U,V).Inparticular,fors=1thelatterexpressionimpliesthatthe α α α model-dependentoverallfactorappearinginthegeneralformulaforthemutualinformationofa1+1dimensionalCFT(see, e.g.,Refs.11,13,18) isequalto1forthemodelsunderconsideration. An alternative measure of the information shared by the blocks A (1 (cid:54) i (cid:54) r) discussed in Ref.18 is the quantity i I(cid:101)α(A1,...,Ar)≡∑rl=1(−1)l+1∑1(cid:54)i1<···<il(cid:54)rSα((cid:83)lk=1Aik)(weomitthedependenceonthechain’sstate|K(cid:105)forconciseness’s sake). Inparticular,forr=3weobtainthetripartiteinformationintroducedinRef.12,whosevanishingcharacterizestheexten- sivityofthemutualinformationIα. Itcanbereadilycheckedthattheasymptoticrelation(27)impliesthatI(cid:101)α(A1,...,Ar)van- ishesasymptoticallyforthemodelsunderconsideration.ThisfollowsimmediatelyfromEq.(29)—whichisitselfaconsequence of (27)— and the identities ∑1(cid:54)i1<···<il(cid:54)r∑lk=1Sα(Aik) = (cid:0)rl−−11(cid:1)∑ri=1Sα(Ai), ∑1(cid:54)i1<···<il(cid:54)rIα(cid:0)(ui1,...,uil),(vi1,...,vil)(cid:1) = (cid:0)r−2(cid:1)I (u,v). Inparticular,thisshowsthattheconjecture(27)impliestheasymptoticextensivityofthemutualinformationI l−2 α α forthemodelsunderconsideration. (Fortheinfinitechainwiths=1,thishadalreadybeennotedinRef.22.) Anothernoteworthyconsequenceoftheasymptoticformula(27)isthefactthatforlargeN theentanglemententropycan beapproximatelywrittenas(omitting,forsimplicity,itsarguments) S ∼rs(cid:18)b log(cid:18)2N(cid:19)+c (cid:19)+b g, with g≡s(cid:18)∑r logsin(cid:0)vi−ui(cid:1)+logf(u,v)(cid:19)+r(cid:18)∑s logsin(cid:0)qi−pi(cid:1)+logf(p,q)(cid:19). α α π α α 2 2 i=1 i=1 (30) Theterminparenthesisinthelatterformula,whichcontainstheleadingcontributionrsb logN toS asN →∞,depends α α onlyonthetopologyoftheconfigurationconsidered. Inparticular,fromthecoefficientofthelogN termwededucethatthe modelsunderconsiderationarecritical,behavingasa1+1dimensionalCFTwithcentralchargers. Notealsothatthefactthat theleadingasymptoticbehavioroftheRényientanglemententropyS dependsonlyonthetopologyoftheconfigurationin α bothpositionandmomentumspaceisageneralizationofthewidespreadhypothesis(forthecaser=1)thattheentanglement propertiesofcriticalfermionmodelsaredeterminedbythetopologyoftheirFermi“surface”(see,e.g.,Ref.31). 9/12 Ontheotherhand,thenumericalconstantginthepreviousequationisindependentofNandα,andissolelydeterminedby thegeometryoftheconfigurationinbothpositionandmomentumspace. Forinstance,forthetwosymmetricconfigurations discussedinFig.4(a),(c)thisconstantisrespectivelyequalto−3log12and−25log1250. Theasymptoticformula(30)makesitpossibletotackleseveralrelevantproblemsthatwouldotherwisebeintractablein practice. Forinstance,itisnaturaltoconjecturethatfixingr,s,γ andγ theblockconfigurationwhichmaximizestheentropy x p isthesymmetricone(i.e.,requallyspacedblocksofequallengthinpositionspace,andsimilarlyinmomentumspace). Our numericcalculationsforseveralconfigurationssuggestthatthisisindeedthecase(see,e.g.,Fig.5(a)forthecaseα =2). As weseefromEq.(30),thisproblemreducestoastandard(constrained)maximizationproblemforthegeometricfactorg,which inturnssplitsintotwoseparateproblemsforthefunctiong1(u,v)≡∑ri=1logsin(cid:0)vi−2ui(cid:1)+logf(u,v)anditsmomentumspace counterpart. Forinstance,whenr=2wecanexpressg (u,v)intermsofthelengthL ≡V −U ofthefirstblockandthe 1 1 1 1 interblockdistanced≡U −V as 2 1 g (u,v)=σ(θ)+σ(2πγ −θ)+σ(2πγ +δ)+σ(δ)−σ(θ+δ)−σ(2πγ −θ+δ)≡h(θ,δ), (31) 1 x x x where σ(x)≡logsin(x/2), θ =2πL /N ∈(0,2πγ ), δ =2πd/N ∈(0,2π(1−γ )). Moreover, from the symmetry of h 1 x x under θ (cid:55)→2πγ −θ and δ (cid:55)→2π(1−γ )−δ, it suffices to find the maximum of this function in the rectangle (0,πγ ]× x x x (0,π(1−γ )]. Anelementarycalculationshowsthathhasalocalmaximumatθ =πγ ,δ =π(1−γ ),i.e.,atthesymmetric x x x configuration,andthat∇hhasnootherzeroson(0,πγ ]×(0,π(1−γ )]. Thisprovestheconjectureinthecaser=2(cf.Fig.5 x x (b)). Forinstance,forr=s=2themaximumvalueoftheentropyiseasilyfoundfromthelatterargumentandEq.(30)tobe 4[b log(Nsin(πγ )sin(πγ )/2π)+c ]. α x p α 20 18 2 16 S 14 12 1500 2000 2500 3000 3500 4000 N (a) (b) Figure5. (a): RényientropyS vs.itsasymptoticapproximation(24)(redline)insymmetric(bluepoints)andsome 2 non-symmetric(bluetriangles)configurationswithγ =1/3,γ =1/2and(bottomtotop)4+2,5+2and4+3blocks. (b): x p 3Dplotofthefunctionh(θ,δ)inEq.(31)forγ =1/2(theredpointcorrespondstothesymmetricconfiguration x (θ,δ)=(π/2,π/2)). Discussion InthisworkwehaverigorouslyestablishedageneraldualityprinciplewhichpositstheinvarianceoftheRényientanglement entropyS(A;K)ofachainoffreefermionsunderexchangeofthesetsofexcitedmomentummodesK andchainsitesAof thesubsystemunderstudy,wherebothAandK aretheunionofanarbitrary(finite)numberofblocksofconsecutivesitesor modes. Bymeansofthisprinciple,wehavederivedanasymptoticformulafortheRényientanglemententropywhentheset K consistsofasingleblock. Fromthisformulaandanaturalassumptionconcerningtheadditivityoftheentropywhenthe blocksarefarapartfromeachotherineitherpositionormomentumspacewehaveconjecturedanasymptoticapproximation fortheentanglemententropyinthegeneralcasewhenbothsetsAandK consistofanarbitrarynumberofblocks. Wehave presentedamplenumericalevidenceofthevalidityofthisformulafordifferentmulti-blockconfigurations,andhaveanalyzed itserrorcomparingitwithitscounterpartfortheXX modeldiscussedbyCalabreseandEssler30. Ourconjecturealsoyields anasymptoticformulaforthemutualinformationofacertainnumberofblocksinposition(ormomentum)spacevalidfor arbitrarymulti-blockconfigurations,whichfors=1andinthecaseofaninfinitechainisconsistentwiththegeneralonefor 1+1dimensionalCFTs. Thepreviousresultsopenupseveralnaturalresearchavenues. Inthefirstplace,itwouldbedesirabletofindarigorous proofofthefundamentalasymptoticrelation(26),whichleadstotheexplicitasymptoticformula(27). Inparticular,itwould 10/12

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.