ebook img

A consistent interpretation of recent CR nuclei and electron spectra PDF

0.47 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A consistent interpretation of recent CR nuclei and electron spectra

A consistent interpretation of recent CR nuclei and electron spectra GiuseppeDiBernardo DepartmentofPhysics,UniversityofGothenburg,SE-41296,Gothenburg,Sweden 1 CarmeloEvoli 1 0 SISSA,viaBonomea265,34136Trieste,Italy 2 DanieleGaggero,DarioGrasso1 n a INFN,SezionediPisa,LargoBrunoPontecorvo3,56127Pisa,Italy J 0 LucaMaccione 1 DeutschesElektronen-Synchrotron,Notkestraße85,22607Hamburg,Germany ] E MarioNicolaMazziotta H IstitutoNazionalediFisicaNucleare,SezionediBari,70126Bari,Italy . h p - o r t s Abstract a [ Wetrytointerprettherecentlyupdatedmeasurementofthecosmicrayelectron(CRE)spectrum 1 observedbyFermi-LAT,togetherwithPAMELAdataonpositronfraction,inasingle-component v scenarioadoptingdifferentpropagationsetups;wefindthatthemodelisnotadequatetorepro- 0 ducethetwodatasets,sotheevidenceofanextraprimarycomponentofelectronsandpositrons 3 is strengthened. Instead, a doublecomponentscenariocomputedin a Kraichnan-likediffusion 8 setup(whichissuggestedbyB/Candp¯data)givesasatisfactoryfitofallexisitingmeasurements. 1 . Weconfirmthatnearbypulsarsaregoodsourcecandidatesfortherequirede± extra-component 1 andwe showthatthepredictedCRE anisotropyin ourscenariois compatiblewithFermi-LAT 0 recentlypublishedconstraints. 1 1 : v i 1. Introduction X r LastyeartheFermi-LATCollaborationpublishedthee+ +e− spectrumintheenergyrange a between20GeVand1TeV,measuredduringthefirstsixmonthsoftheFermimission[1]. That result came in the middle of an interesting debate which arose after that ATIC and PAMELA collaborationsreportedsomeanomalousresults:ATICobservedabumpinthee++e−spectrum at around 600 GeV, while PAMELA found the positron fraction e+/(e+ +e−) to increase with energyabove10GeV:thesefeaturesarehardlycompatiblewiththestandardscenarioinwhich [email protected] PreprintsubmittedtoElsevier January11,2011 CR electrons are accelerated in supernova remnants (SNRs) and positrons are predominantly of secondaryorigin, and were interpretedby many authorsas a possible signature of decay or annihilationofDarkMatter(DM)particles,evenifamoreconventionalinterpretationinterms of astrophysicalsources (namely pulsars) was also considered. Fermi-LAT spectrum does not displaythefeatureseenbyATIC,beingcompatiblewithasinglepowerlaw;theabsenceofthat featurewaslaterconfirmedbytheH.E.S.S.Cherenkovtelescopewhosespectrumbelow1TeV isinagreementwithFermi-LAT’s.Soonafterthatmeasurementwaspublished,someofus,with othermembersofFermicollaboration,showedthataninterpretationofthee+ +e− spectrumis possiblewithinaconventionalmodelinwhichSNRsaretheonlyprimarysourcesofCREs[2]. Below20GeV,however,wefoundthepredictionsofthatmodeltobeintensionwithpre-Fermi data; furthermore,thepositronfractionmeasuredbyPAMELAwasnotreproducedwithinthat framework. We thereforeproposed, in the same paper, a scenario which invokedthe presence of an extra component of e− + e+: it was argued that such extra-componentcan naturally be producedby near middle-agedpulsars. An alternative interpretation based on the annihilation of DM particles was also discussed but considered disfavoured. Other possible origins of the required e+ +e− extra-componentwere proposed by other Authors: e.g. enhanced secondary productioninstandardSNRs[3]oraninhomogeneousdistributionofsourcesintheGalaxy[4]. Recently,theFermi-LATCollaborationreleasedanewmeasurementoftheCREspectrumbased on one year data. The observed spectrum extends down to 7 GeV[5] and is confirmed to be compatiblewith asinglepower-lawwith spectralindex3.08±0.05. Hintsofa deviationfrom apurepower-lawbehavior,alreadyfoundinthesixmonthdata,arestillpresentintheupdated spectrum,whoselowenergypartiscompatiblewithpre-Fermimeasurementandnotreproduced bythemodelsweproposedinRef. 2:thisconsiderationcallsforsomerevisionsofourscenario. Moreover,afterthereleaseofPAMELAantiprotondatasomeofusused(seeRef.6)therecently developed DRAGON 2 package[7] to perform a combined maximum likelihood analysis on B/C and antiproton data and found that the “conventionalmodel”, based on the assumption of the existence a Kolmogorov-like turbulence in the ISM, is not the most adequate to describe the measurements: wethereforeproposedanewmodelbasedonaKraichnan-liketurbulence. This resultgivesanotherreasontorevisethemodelsdescribedinRef. 2. 2. Thepropagationsetups The CR propagation in the Galaxy is described by a well known diffusion-loss equation whichcanbesolvedanalitically,undersimplifyingassumptions,ornumerically,makinguseof GALPROP or DRAGON packages. This equation includes several free parameters which need to be tunedby comparisonwith data: D andδ, i.e. thenormalizationandenergydependenceof 0 the diffusioncoefficient, the Alfve´nvelocityv which parametrizesthe levelof reacceleration, A the height of the Galactic diffusion region z , and the injection index of the CR species γ . h p Moreover,whenconsideringdata belowa fewGeV/nalso the modulationdueto solaractivity playsasignificantroleandmustbetakenintoaccount.Thefirststepofourwork,beforestarting to investigatethe e+ +e− spectrum, consists in fixing the propagationparameters, i.e. D and 0 δ, and the level of reacceleration. The datasets which constrain these data are secondary-to- primaryratios, in particularB/Cand p¯/p. In thefollowingwe willconsiderthreepropagation models, which are defined as follows. 1) The PD modelis a plain diffusion one, in which we 2Codeavailableathttp://www.desy.de/∼maccione/DRAGON/ 2 (a) (b) Figure1: Panela)PredictedB/Ccomparedwithdata. Redlines: Kolmogorovmodel(KOL);blue: Kraichnanmodel (KRA);green:plaindiffusion(PD).Solidlines:Φ=450MV;triple-dottedlines:Φ=300MV.Panelb)Theoretical p¯ spectraarecomparedwithdata;solidlines:Φ=550MV;dashedlines:LIS. triedtoreproduceCRdatawithnoreacceleration,hencesettingv = 0. Inthismodelδ = 0.6. A 2) The KOL model is the so called “conventional model”, built assuming a Kolmogorov-like turbulence,whichfixesδ=1/3;inthismodelthereaccelerationisquitehigh:v =30km/s. 3) A TheKRAmodelassumesaKraichnanspectrumforthegalacticturbulentmagneticfield,hence setting δ = 1/2. Reacceleration is lower: v = 15km/s. At low energya modifiedbehaviour A ofthediffusioncoefficientisadoptedto reproducethepeakat1GeV inB/Cdata. Thismodel waspresentedinRef. 6andobtainedastheresultofacombinedmaximumlikelihoodanalysis basedonB/Cand p¯/pmeasurements. Thecomparisonbetweendataandmodelpredictionsfor B/Cand p¯/pcanbeseeninFig. 1(a)andFig. 1(b). WerefertoRef. 6forthecompletelistof parameterswechoseforthe3models. 3. ModelingtheCREspectrumwithasingleGalacticcomponent (a) (b) Figure2:Panela): thee−+e+spectrumfortheKOL(red),KRA(blue)andPD(green)diffusionsetups. Theelectron sourcespectralindexesare1.60/2.50below/above4GeVfortheKOLmodeland2.00/2.43and2.0/2.40below/above2 GeVfortheKRAandPDmodelsrespectively. Panelb):e+/(e−+e+).Φ=550MV. 3 Figure3: Thee− +e+ total spectrumandpositronfraction (inthebox)forourtwo-component model. Dottedline: propagatedstandardcomponentwithinjectionslopeγe− =2.00/2.65above/below4GeVandEceu−t=3TeV;dot-dashed line:e±componentwithγe± =1.5andEceu±t =1.4TeV.Bluesolidline:modulatedtotalspectrum(Φ=550MV).Blue dashed:LIStotal. We start our analysis by trying to interpret CRE spectrum with single-componentmodels. We evaluated these modelwith DRAGON numericalpackage[6] and verified that our results are reproducedby GALPROP[9, 10] underthesame physicalconditions. We considerthe threedif- fusion setups (KOL, KRA and PD) discussed in the previoussection and for each of them we tunethefreeparametersinvolvedinthecalculationagainstFermi-LATdata. Wefindthatarea- sonablefitofFermi-LATspectrumcanbeobtainednormalizingthemodelstodataat≃10GeV and adoptingthe followinginjectionindexes: 2.50 in the KRA model, 2.43forthe KOL, 2.40 forthePD (seeFig. 2(a)). ItisworthnoticingthatKOLmodelrequiresasharpspectralbreak (i.e. aninjectionindexof1.60below4GeV)toavoidananomalousbehaviorwhichwouldoth- erwiseariseinthepropagatedspectrum:thecombinedeffectofreaccelerationandenergylosses createsapronouncedbumpintheunmodulatedspectrumatlowenergy,whichisonlypartially smearedoutbysolarmodulation. ThiseffectissmallerinKRAmodelandabsentinPDsetup, sointhesecasesamuchsofterbreakisrequired: 2.0insteadof1.60istheindexbelow2GeV. However, the main drawbackof a single componentapproach, concerningFermi-LAT data, is that–nomatterwhatpropagationmodelisadopted–itisimpossibletoreproduceallthefeatures revealedintheCREspectrum,inparticulartheflatteningobservedataround20GeV(whichwas alsorecentlyfoundbyPAMELA[11])andthesofteningat∼500GeV.Concerningthepositron fraction,theresultscanbeseeninFig.2(b). Clearly,below10GeVthee+/(e−+e+)measured by PAMELA can be reproducedin the KRA and PD modelswhile the fit is unsatisfactory for the KOL:again, low reaccelerationmodelsseem to providea better descriptionof low energy data. None of the single componentrealizations, however, can reproducethe rising behaviour observedbyPAMELAabove10GeV. 4. Twocomponentsmodels In the followingwe try to reproduceall data in a two-componentscenario. The first com- ponent(standard)consistsofelectronsacceleratedinSNRs andasecondarycontributionofe− 4 ande+originatedbytheinteractionofthehadronicpartofCRswithinterstellargas.Thesecond one(extra-component)ismadeofe−ande+injectedintheISMwithacommonspectrumofthis kind:Qe±(E)= Q0(cid:16)EE0(cid:17)−γe± e−E/Eceu±t,wheretheinjectionindexisharder:γe± <2.Wealsoassume thatbothsourceclasseshavethesamecontinuousspatialdistribution. Thenormalizationofthe twocomponentsisperformedintwosteps.1)Wetunethestandardcomponenttoreproduceboth thee−+e+spectrummeasuredbyFermi-LATandthee+/(e−+e+)measuredbyPAMELAbelow 20GeV,wheretheeffectoftheextracomponentissupposedtobenegligible. Remarkably,this is possible only if we use propagationsetups with low reacceleration, namely either the KRA orthePD,becausethelow-energypartofPAMELApositronratiocan’tbereproducedinKOL setup. Since the KRA[6] also provides the best combined fit of B/C and antiproton data (see Sec. 2), we will stick to this model from now on. The required source spectral slopes for the electronstandardcomponentisγe− =2.00/2.65below/above4GeVforthispropagationmodel. FromFig. 3the readercansee assuch aset-upallowsa remarkablygoodfitofFermi-LATas wellasotherexperimentaldata. Suchindexisquitesteepifcomparedtotheoreticalpredictions regardingFermiaccelerationmechanism,butweremindthereaderthatwemodeledthestandard componentintheapproximationofacylindricallysymmetricsourcedistribution,whichmaybe less realistic for high energyelectronswhere the local distribution is relevant. Accountingfor thespiralarmdistributionofSNRsmayresultinadifferentrequirementfortheinjectionindex. Indeed,beingtheSunintheso-called“localspur”situatedinainterarmregion,theaveragedis- tancefromSNRsislargerthaninthesmoothcase:asaconsequence,aharderinjectionspectrum mayberequiredtocompensateforthelargerenergylossesandreproducetheobservedspectrum. Clearly, in the absence of the extra e±component, high energyCRE and positronfraction data wouldcompletelybemissed (seedottedline inFig. 3). 2)We tunethe extra-componenttore- produceFermi-LATand H.E.S.S. high energyCRE data. We find here thatthis is possible by takingγe± = 1.5and Ecut = 1.0÷1.5TeV (see Fig.3). Thisissimilar to whatdonein Ref. 2 but in that paper a KOL diffusion was used (so low energypositron data were not reproduced in thatcase). Itis interestingthatpreliminarye− spectrummeasuredbyPAMELA [11] is also nicelyreproducedbyourextra-componentmodels: above100GeVthisspectrumissofterthan thee−+e+measuredbyFermi-LATbytheexactamountwhichisrequiredtoleaveroomthee+ extra-component. 5. Theroleofastrophysicalnearbysources Thenatureoftheextra-componentofprimaryelectronsandpositronsthatweinvokedinthe previoussectionisanintriguingmatterofdebate,andthepossiblescenariosincludebothanex- oticexplanation(involvingannihilationordecayofParticleDarkMatter)orapurelyastrophys- icalinterpretation. Hereweconcentrateonthesecondpossibility. Differentlyfromtheprevious section,wetreattheextracomponentasoriginatingfromadiscretecollectionofsources;wethen treatelectronandpositronpropagationfromthosesourcestotheSolarSystembysolvingana- lyticallythediffusion-lossequationsimilarlytowhatdoneinRef. 2. Thelargescale(standard) componentisinsteadmodeledwithDRAGONasdoneintheprevioussection;forconsistency,we treatanalyticalandnumericalpropagationunderthesamephysicalconditions. Thepropagation setupadoptedistheKRAone. Therearebasicallytwoclassesofobjectsweconsider:SNRs(as sourcesofelectronsonly)andpulsars(assourcesofelectron+positronpairs). SNRsarethewell knownnaturalcandidatesasCRaccelerators,andalsotheconventionalcomponentisexpectedto originatefromobjectsofthiskind;consideringindividualSNRsinthenearbyISMisimportant 5 (a) (b) Figure4: Standardcomponent+nearbypulsarsandSNRs. Panela): e++e−spectrum. EnergyreleasebyeachSNR: 2×1047erg. Pulsarefficiency: ≃ 30%. Φ = 500MV. Panelb): theintegratedexpectedanisotropy,asafunctionof minimumenergy,iscomparedtoFermi-LATtheupperlimits[12]. duetothefactthatathighenergy(abovesomehundredGeV)diffusemodelsdon’tgiveaproper descriptionofrealitysincethelosslengthduetosynchrotronandICbecomescomparabletothe averageSNRmutualdistancesothatonlyfewsourceswithinfewhundredparsecsareexpected todominate.Pulsars,instead,areveryinterestingcandidatesasprimarysourcesofbothelectrons andpositrons. Theyareextremeastrophysicalenvironmentsthatreleaseverylargeamountsof energy(∼1052÷1054erg)duringtheirlifetime.Thee−+e+pairsareexpectedtobeproducedin themagnetospherebytheinteractionofcurvaturephotonswiththepulsarmagneticfield;those particlesarethenexpectedtobeacceleratedattheterminationshockofthepulsarwindnebula (PWN).Thepossibilitythatelectronsandpositronsfromnearbypulsarscandominatethehigh energy tail of the CRE spectrum and explain the rising behavior of the positron fraction was alreadyproposedinRef. 13andstudiedinmorerecentpapers(e.g. Refs14and15). Similarly tothe approachtakeninRef. 2, wemodeltheemissionfromSNRs andpulsarsasapoint-like burst; for pulsarswe also introducea time delaywith respecttothe birth ofthe object: sucha delayismotivatedbythefactthatelectronsandpositronsareexpectedtobetrappedinthePWN until it mergeswith the ISM. We assume that for bothSNRs and pulsars particlesare injected with a powerlaw spectrum upto an exponentialcutoff; the injectionindexis howeverset in a differentwayforthetwoclassesofobjects. We consideredallobservedSNRs within2kpcas taken from the Green catalogue [16] and the pulsars within 2 kpc from Earth taken from the ATNF catalogue [17]. We verified that more distant objects give a negligible contribution. In Fig. 4(a)werepresenttheCREspectrumobtainedforareasonablecombinationofparameters, namely: for SNRs: spectral index γe−SNR = 2.2, cutoff energy EcSuNtR = 2 TeV, electron energy releaseperSNESNR =2×1047erg;forpulsars:γe± =1.5,cutoffenergyEcut =1TeV,efficiency ηe± ≃ 30%. We see from Fig. 4(a) that the main contribution comes from Monogem pulsar; thisisduetotheproximityofthissourceandtotheintroductionofthedelaybetweenthepulsar birthandtheactualinjectionofthepairsintheISM;withoutconsideringsuchdelay,Monogem contributionwoulddecreasesignificantlyandothernearbyyoungpulsar,suchasVela,wouldbe the mostimportantsourcesin the highenergyregion; instead, in ourframeworkelectronsand positronsfromVelaareexpectedtobestilltrappedinthesurroundingnebulaandthereforenot yetobservedintheCREspectrum. Itisimportanttocheckiftheseresultsarecompatiblewith 6 recentlypublishedupperlimitsontheanisotropyine−+e+ flux[12]. Ourpredictionisplotted in Fig. 4(b). The importantresult is that our scenario is not excludedby anisotropymeasure- ments;thereadermaynoticethatMonogempulsar(redsolidline)andVelaSNR(blackdashed line) contributemostto the totalanisotropy(the blacksolid line). However,the total expected anisotropyisveryclosetothemeasuredupperlimit, soafuturedetectionatlevel∼ 1%at∼ 1 TeVtowardstheportionoftheskywhereVelaandMonogemarelocatedistobeexpected. 6. Conclusions The spectacular data on CR electrons and positrons, together with measurements on light nuclei and antiprotons, suggest that a double-componentapproach to the leptonic part of CRs computedintheframeworkofaKraichnan-liketurbulenceprovidesagoodself-consistentsce- nariowhichsatisfactorilyreproducesallexistingobservations. Inthispicture,inadditiontothe conventionalcomponentacceleratedinSNRs,acontributionfrompulsars,asemittersofe−+e+, permits to correctly fit both the features revealedby Fermi-LAT in the CRE spectrum and the e−/(e++e−)measuredbyPAMELA.Theexpectedanisotropyinthedirectionofthemostpromi- nent CRE candidate source, Monogem pulsar, is compatible with the present upper limit just releasedbyFermi-LATcollaborationandmaybedetectableinafewyears. References [1] A.A.Abdoetal.[TheFermiLATCollaboration],Phys.Rev.Lett.102(2009)181101 [2] D.Grassoetal.[FERMI-LATCollaboration],Astropart.Phys.32(2009)140 [3] P.Blasi,Phys.Rev.Lett.103(2009)051104 [4] N.J.Shaviv,E.NakarandT.Piran,Phys.Rev.Lett.103(2009)111302 [5] M.Ackermannetal.[FermiLATCollaboration],arXiv:1008.3999[astro-ph.HE],acceptedforpublicationinPhys. Rev.D [6] G. Di Bernardo, C. Evoli, D. Gaggero, D. Grasso and L.Maccione, arXiv:0909.4548 [astro-ph.HE]; Astropart. Phys.,inpressdoi:10.1016/j.astropartphys.2010.08.006. [7] C.Evoli,D.Gaggero,D.GrassoandL.Maccione,JCAP0810(2008)018 [8] G.DiBernardo,C.Evoli,D.Gaggero,D.Grasso,L.MaccioneandM.N.MazziottaarXiv:1010.0174[astro-ph.HE]; submittedtoAstropart.Phys. [9] A.W.Strong,I.V.Moskalenko,T.A.Porter,G.Johannesson,E.OrlandoandS.W.Digel,arXiv:0907.0559[astro- ph.HE]. [10] A.E.Vladimirovetal.,arXiv:1008.3642[astro-ph.HE]. [11] O. Adriani,talkatICHEPconference2010,Paris(http://www.ichep2010.fr/) [12] M.Ackermannetal.[Fermi-LATcollaboration]arXiv:1008.5119[astro-ph.HE];acceptedforpublicationinPhys. Rev.D. [13] F.A.Aharonian,A.M.AtoyanandH.J.Volk,Astron.Astrophys.294(1995)L41. [14] D.Hooper,P.BlasiandP.D.Serpico,JCAP0901(2009)025. [15] S.Profumo,arXiv:0812.4457[astro-ph]. [16] D.A.Green,Bull.Astron.Soc.Ind.,37(2009)45;arXiv:0905.3699[astro-ph.HE]. [17] R.N.Manchester,G.B.Hobbs,A.Teoh,&M.Hobbs,ApJ129(2005)1993 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.