ebook img

A Bernstein Inequality For Exponentially Growing Graphs PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Bernstein Inequality For Exponentially Growing Graphs

A Bernstein Inequality For Exponentially Growing Graphs ∗ JohannesT.N. Krebs† January17, 2017 7 1 0 2 n a J Abstract 6 1 In this article we present a Bernstein inequality for sums of random variables which are defined on a graphical ] networkwhosenodesgrowatanexponential rate. Theinequalitycanbeusedtoderiveconcentrationinequalitiesin T highly-connectednetworks.Itcanbeusefultoobtainconsistencypropertiesfornonparametricestimatorsofconditional S . expectationfunctionswhicharederivedfromsuchnetworks. h t a Keywords: Asymptotic inference; asymptotic inequalities; Bernstein inequality; Concentration inequality; Graphs; m Highly-connectedgraphicalnetworks;Mixing;Nonparametricstatistics;Randomfields;Stochasticprocesses [ MSC2010: Primary:62G20,62M40,90B15;Secondary:62G07,62G08,91D30 1 v 8 8 1 InequalitiesoftheBernsteintypeareanimportanttoolfortheasymptoticanalysisinprobabilitytheoryandstatistics. 4 TheoriginalinequalityderivedbyBernstein(1927)givesboundson (S > ε),whereS = n Z forbounded 0 P | n| n k=1 n random variables Z ,...,Z which are i.i.d. and have expectation zero. There are various versions of Bernstein’s . 1 n P 1 inequality,e.g., Hoeffding(1963). Inparticular, generalizationsto differentkindsof stochastic processeshave gained 0 importance: Carbon(1983), Collomb(1984), BrycandDembo(1996) andMerleve`deetal. (2009) provideextensions 7 1 to times series Z : t which are weakly dependent. Valenzuela-Dom´ınguezandFranke (2005) give a further t v: generalization t{o strong∈miZxi}ng random fields Zs : s N which are defined on the regular lattice N for some { ∈ Z } Z i lattice dimensionN . Thecorrespondingdefinitionsofdependenceandtheirinteractionpropertiesaregivenin X ∈ N+ Doukhan(1994)andinBradley(2005). r a Bernsteininequalitiesinparticularfindtheirapplicationswhenderivinglargedeviationresultsor(uniform)consistency statementsinnonparametricregressionanddensityestimation,compareGyo¨rfietal.(1989)andGyo¨rfietal.(2002). InthisarticlewederiveaBernsteininequalitywhichadaptstohighly-connectednetworkswherethenumberofnodes growsatan exponentialrate. A well-knownexampleforsucha graphis theinternetmapwhichtries to representthe internetwithvisualgraphics. Anotherapplicationmaybenestedsimulationswhichareusedininsurancemathematics to simulate the outcomeof an insurancecontract. We deriveanotherconcentrationinequalitybased on thisBernstein inequality.Itturnsoutthatweneedasomewhatstricterdecayintheα-mixingcoefficientsthanitisusuallyassumedin thecasefortimeseries. Thispaperisorganizedasfollows: wegivethemotivationandthedefinitionsinSection1. Section2containsthenew Bernsteininequalityandconcentrationinequalitiesforexponentiallygrowinggraphs,itisthemainpartofthisarticle. TheAppendixAcontainsausefulpropositionofDavydov(1973). ∗ThisresearchwassupportedbytheFraunhoferITWM,67663Kaiserslautern,GermanywhichispartoftheFraunhoferGesellschaftzurFo¨rderung derangewandtenForschunge.V.TheauthorthanksHannesChristiansenforproofreadingpartsofthearticle. †DepartmentofMathematics,UniversityofKaiserslautern,67653Kaiserslautern,Germany,email:[email protected] 1 1 Introduction InthissectionweconsiderageneralgraphG=(V,E)withacountablesetofnodesV andasetofedgesE. Wedefine thenaturalmetriconGastheminimalnumberofedgesbetweentwonodes d :V V , G × →N (v,w) inf l suchthatthereare(v ,v ),...,(v ,v ) E with v =v,v =w . 0 1 l−1 l 0 l 7→ ∈N ∈ (cid:8) (cid:9) Themetricd isextendedtosetsI,J V intheusualway: d (I,J) = inf d (v,w) : v I,w J . Wedenote G G G ⊆ { ∈ ∈ } byN(v) the setofneighborsofv w.r.t.Gfora nodev ofa graphG = (V,E). Furthermore,we assumethatthereis aprobabilityspace(Ω,A, )whichisendowedwithareal-valuedrandomfieldZ. Thelatterisindexedbythesetof P nodesV, i.e., Z isafamilyofrandomvariables Z : v V suchthatZ : Ω S ismeasurableforeachv V. v v { ∈ } → ∈ Wedenotetheindicatorfunctionby andwedefinetheα-mixingcoefficientoftherandomfield Z : v V onthe v 1 { ∈ } graphG=(V,E)by α (n):= sup sup (A B) (A) (B), n . G I,J⊆V, A∈F(I),|P ∩ −P P | ∈N dG(I,J)≥nB∈F(J) Therandomfieldisstrongmixingw.r.t.Gifandonlyifα (n) 0forn . Inthesequel,weinvestigaterandom G → →∞ fieldswhicharedefinedonthefollowingclassofgraphs: Definition1.1(TreesgrowingatanexponentialrateA). LetA . AtreeT =(V,E)isgrowingatanexponential + ∈N rate Aif T is a rootedtreeandeach nodev V hasexactlyA children. Thenodesin the tree arelabeledaccording ∈ tothefollowingscheme: thedistinguishedroot(whichhasnoparent)islabeledby(0,0)andthechildrenofthenode (j,k)arelabeledby(j+1,A(k 1)+1),...,(j+1,Ak). Hence,thesetofnodesandthesetofedgesaregivenby − V = (j,k):j , 1 k Aj andE = ((j,k),(j+1,k′)): (j,k) V andA(k 1)+1 k′ Ak . ∈N ≤ ≤ { ∈ − ≤ ≤ } (cid:8) (cid:9) ArootedgraphG=(V,E)isgrowingatanexponentialrateAiftheedgesEcanbedecomposedintotwodisjointsets asE = E′ E˜ suchthat(V,E′)is atree growingatan exponentialrateAandthesetE˜ of additionaledgeshasthe ∪ propertythatitdoesnotconnectnodesofarbitrarylengthinT,i.e., sup d (v,w) (v,w) E˜ < . T { | ∈ } ∞ We come to the definition of an embeddable graph. Here it is worthy to mention that especially in the context of − graphtheory therearedifferentdefinitionsofgraphembeddings:thecommondefinitionofanembeddingofagraph − G requires, loosely speaking, that the edges of the embedded graph may only intersect at their endpoints, i.e., at the nodes. Itiswellknownthatanygraphwithcountablymanynodescanbeembeddedinto 3 viaplacingthei-thnode Z atthepoint(i,i2,i3) 3,compareCohenetal.(1994). Furthermore,onecancharacterizethefinitegraphswhichare ∈Z embeddableintotheplane(theplanargraphs)withthehelpofthetheoremsofKuratowski(1930)andofWagner(1937). Here,weslightlychangethisgraphtheoreticdefinitionsuchthatitistailoredtoourneeds: wecanomittherestriction thatedgesmaynotintersectataninteriorpoint.However,sinceweshallusuallybedealingwithinfinitegraphs,wehave toaddarequirementthatisessentialwheniscomestomixingrandomfieldswhicharedefinedonthegraphwhichisto beembedded.Weneedthisdefinitiontoshowwhatisintuitivelyclear:theBernsteininequalitiesforregularlatticesare notapplicableinthecontextofgraphswhichgrowatanexponentialrate. Wegivethedefinition Definition1.2(EmbeddableGraphs). LetG=(V,E)beagraphwithcountablymanynodesV anddenotebyd the p, N Euclideanp-normontheN-dimensionallattice N,forp 1.Gisembeddablein N ifthereisadimensionNZ + Z ≥ Z ∈N suchthatGisisomorphictoagraphG′ =(V′,E′)withV′ N andforeachsequence((v ,w ) : i ) V V i i ⊆Z ∈N ⊆ × withimage((v′,w′):i ) V′ V′itistruethat i i ∈N ⊆ × sup d (v ,w ):i < = sup d (v′,w′):i < . { G i i ∈N} ∞ ⇒ { ∞,ZN i i ∈N} ∞ 2 Inthefollowing,whenspeakingofthelattice N asa graph,we shallalwaysunderstandthe graphG = (V,E)with Z nodesV = N andedgesE = (v,v+b ):v V, i=1,...,N whereb isthei-thstandardbasisvectorwhichisone i i Z { ∈ } inthei-thcoordinateandzerootherwise.Notethatinthiscase,wehaved d andd d Nd . G ≡ 1,ZN ∞,ZN ≤ 1,ZN ≤ ∞,ZN Wehaveapracticallemmawhichgivesequivalentformulationsofthisdefinition Lemma1.3. LetGbeagraph.Thenthefollowingareequivalent 1. Gisembeddablein N Z 2. GisisomorphictoagraphG′ =(V′,E′)withnodesV′ N andthereisaconstant0<C < suchthatfor ⊆Z ∞ any(v,w) V V withimage(v′,w′) V′ V′itistruethatd (v′,w′) Cd (v,w). ∈ × ∈ × ∞,ZN ≤ G 3. GisisomorphictoagraphG′ =(V′,E′)withnodesV′ N and ⊆Z sup d (v′,w′): v V,w N(v),v(resp. w)isisomorphictov′ (resp.w′) < . { ∞,ZN ∈ ∈ } ∞ Inparticular,let Z :v V bearandomfieldonG,denoteby Z :s V′ thesamerandomfieldunderthegraph v s { ∈ } { ∈ } isomorphism. Thenthemixingcoefficientssatisfyasymptoticallyα ( C ) α whichmeansthatstrongmixing mixingisinheritedwhenswitchingbetweenGandG′. ∞,ZN ⌈ ·⌉ ≤ G Proof. (1) (2)and(3):letGbeembeddablein N,thenobviouslyV iscountable,thus,thenumber ⇒ Z C :=sup d (v,w):d (v,w)=1,v,w V { ∞,ZN G ∈ } ismeaningfulandfinitebyassumption.Consequently,wehavefortwoconnectednodesvandwinV thatd (v,w) ∞,ZN ≤ Cd (v,w). Ifvandwarenotconnectedthend (v,w)= . Hence,Cistheproperconstant.Theconverseinclusions G G ∞ (2)(resp.(3)) (1)areimmediate. ⇒ We come to the amendment of the lemma. Let n be given and consider a random field on G and its graph- ∈ N isomorphiccounterpartonG′. WeinferfortwosetsI′,J′ V′ withpreimageI,J V andd (I′,J′) nthat Cd (I,J) d (I′,J′) n,i.e.,wehaveusingthegr⊆aphisomorphismforn ⊆C ∞,ZN ≥ G ≥ ∞,ZN ≥ ≥ (I′,J′): I′,J′ V′andd (I′,J′) n (I,J): I,J V andd (I,J) C−1n . { ⊆ ∞,ZN ≥ }⊆{ ⊆ G ≥ } Thus, α (n) α C−1n for n C. This means that asymptotically α α C−1 or rather ∞,ZN ≤ G ≥ ∞,ZN ≤ G · α ( C ) α . ∞,ZN ⌈ ·⌉ ≤ G (cid:0)(cid:4) (cid:5)(cid:1) (cid:0)(cid:4) (cid:5)(cid:1) Thefollowingclassofgraphscannotbeembeddedin N Z Proposition1.4(Exponentiallygrowinggraphsarenotembeddable). LetG=(V,E)beagraphwithrootv V. Put 0 ∈ L := v andrecursively 0 0 { } L := v V k−1L w L withw N(v) k ∈ \∪i=0 i |∃ ∈ k−1 ∈ (cid:8) (cid:9) fork . Ifthemap k L growsfasterthananypolynomialfunctionofdegreeN definedon ,Gisnot + k ∈ N N ∋ 7→ | | N embeddablein N. Z Proof. Letthemap k L growfasterthananypolynomialofdegreeN andassumethatGcanbeembedded k N ∋ 7→ | | into N with0 <C < whichsatisfiesd (v,w) Cd (v,w)asstatedinLemma1.3. First,observethatforv Z ∞ ∞,ZN ≤ G andwbothinL thedistanceinthegraphisatmostd (v,w) 2k. Byassumptionthereisak suchthatforall k G 1 ≤ ∈N k k wehave L > (2k+1)N. Thus,fork k therearev,w L withthepropertythatd (v,w) > 2k ≥ 1 | k| ≥ 1 ∈ k ∞,ZN whichimpliesforthesetwonodesthat 2k<d (v,w) Cd (v,w) 2Ck. ∞,ZN ≤ G ≤ 3 Hence,C >1. Inthesameway,thereisak suchthatforallk k ,wehave L >(2C2k+1)N. Inparticular, 2 2 k ∈N ≥ | | thereare(v,w) L ,k k withthepropertythatd (v,w)>2C2kwhichimpliesfork max(k ,k ) ∈ k ≥ 2 ∞,ZN ≥ 1 2 2C2k<d (v,w) Cd (v,w) 2Ck; ∞,ZN ≤ G ≤ whichinturnimpliesC <1. ThiscontradictstheassumptionthatGisembeddablein N. Z ThisimpliesthatwecannotusetheabovementionedBernsteininequalitiesfordatawhichisdefinedonalatticetoderive concentrationinequalitiesforrandomfieldsthataredefinedongraphswhichgrowatanexponentialrateA. Insteadwe giveanewBernsteininequalitywhichcandealwiththisclassofrandomfieldsinthenextsection. 2 A Bernstein inequality for exponentially growing graphs In this section we derive inequalities of the Bernstein type for random fields which are highly-connectedand whose indexsetgrowsatanexponentialrate. Weneedthefollowingimportantlemma: Lemma2.1. LetT =(V,E)beatreegrowingatanexponentialrateA. Denoteby V(j,k,P):= (j′,k′) V j j′ j+P 1, Aj′−j(k 1)+1 k′ Aj′−jk (2.1) ∈ | ≤ ≤ − − ≤ ≤ n o thesetofnodesofthesubtreeofT whichhasitsrootatthenode(j,k)andconsistsofP generations. Consider + ∈ N the graph which is induced by the set of nodes V(j,k,P). Then the number of pairs (v,w) in this graph which are separatedbyexactlyLedgesfor1 L 2(P 1)isgivenby ≤ ≤ − ⌊P−1−L/2⌋ L∧(P−1−h) N(P,L):= Ah Ai 2 1 +(A 1)AL−i−1 L>i (2.2) {L=i} · − 1{ } h=0 i=1∨(L−(P−1−h)) X X (cid:0) (cid:1) AP AL =2 − 1 +(L 1) AP AL−1 L P A 1 {L≤P−1} − − 1{ ≤ } − + 2(P 1) L+1 AP−1+⌊L(cid:0)/2⌋ AL−1∨(cid:1)P L 4 − − − · 1{ ≥ } (cid:0) (A 1)(P 1 (cid:1)(cid:16)L/2 ) 1 AP−1+⌊L/2(cid:17)⌋+AL 2 − − −⌈ ⌉ − L 4 − A 1 · 1{ ≥ } (cid:8) − (cid:9) (A 1)(P L) 1 AP +AL +2{ − − − } 4 L<P A 1 1{ ≤ } − CP AP+L/2, ≤ forasuitableconstant0<C < whichdoesnotdependonP,LandA. ∞ ProofofLemma2.1. Theminimaldistanceinthissubtreeclearlyis1,whereasthemaximaldistanceis2(P 1). Let − nowalengthLbefixed,1 L 2(P 1). Wedistinguishtwocasesforapair(v,w)whichisseparatedbyLedges: ≤ ≤ − inthefirstcasew(resp. v)isadescendantofv(resp. w). Inthesecondcasevandwhaveacommonparentwhichwe callrand,plainly,v =r =w. 6 6 The first case is onlypossible for 1 L P 1, for such an L thereare exactly 2(AP AL)/(A 1)such pairs ≤ ≤ − − − (v,w)inthissubtree.Thesecondcaseispossiblefor2 L 2(P 1).DependingonLtheparentislocatedbetween ≤ ≤ − generationzeroandgeneration P 1 L/2 ,denoteitsgenerationbyh. Havingfixedaparentringenerationhthe ⌈ − − ⌉ distancefromrtothefirstnodevisatleast1 (l (P 1 h))andatmostL (P 1 h),denotethisdistanceby ∨ − − − ∧ − − i. Hence,thereareexactlyAi nodesinquestionforv. Inthiscasethati<LthenodewisseparatedL igenerations − fromr. Sincev =wandtheirgraphdistanceisL,thisyields(A 1)AL−i−1possibilitiesforw. Allinall,wegivethe 6 − numberofpairswiththeformulafromequation(2.2). It followsthe Bernstein inequality. Here we do not considerthe full set of nodesV instead we focuson a strip of V whichisdefinedwiththehelpoftheV(j,k,P)fromthepreviousLemma2.1. 4 Theorem2.2(Bernsteininequality). LetT =(V,E)beatreegrowingatanexponentialrateA.LetZ beareal-valued v randomvariable for eachv V with [Z ] = 0, Z C andVar(Z ) σ2, for some 0 < σ,C < . Let ∈ E v k vk∞ ≤ v ≤ ∞ L ,P andconsiderthesubtreeinducedbythesetofnodes + ∈N ∈N V′ :=V(L,1,P) ... V(L,AL,P) (2.3) ∪ ∪ withV(L,i,P)asinthedefinitiongivenin(2.1). Then Z >ε 2e−βεexp 10√eα (f)(P2+Q2)/(2P2+2Q2+AL) AL v T P (cid:12)(cid:12)(cid:12)vX∈V′ (cid:12)(cid:12)(cid:12) !≤ (cid:26) P2+Q2(cid:27) (2.4) (cid:12)(cid:12) (cid:12)(cid:12) exp 4β2e(P )2 AP −1σ2+4C22(P−1)α (k)N(P,k) AL +1 ·  2  A 1 T  P +Q   − Xk=1 (cid:18) 2 2 (cid:19)   whereQ ,P suchthatQ P andP +Q <AL aswellas  2 2 + 2 2 2 2 ∈N ≤ A 1 logQ β − andf :=2 2 . ≤ 4eCP (AP 1) logA 2 − (cid:24) (cid:25) ProofofTheorem2.2. We have to partition V′ suitably. We use the abbreviations V( ) := V(L, ,P) and T := · · AL/(P +Q ) aswellas, 2 2 e (cid:6) (cid:7) A(i):=V (i 1)(P +Q )+1 ... V (i 1)Q +iP 2 2 2 2 − ∪ ∪ − B(i):=V(cid:0)(i 1)Q2+iP2+1 (cid:1) ... V (cid:0)i(P2+Q2) , (cid:1) e − ∪ ∪ e (cid:0) (cid:1) (cid:0) (cid:1) fori=1,...,T.NotethattheA(i)eandB(i)aretheunionofthedisjoeintsetsV( )andthatsomeA(i)andB(i)might · beempty.Furthermore,wedefine V′ := T A(i)andV′ := T B(i).e 1 ∪i=1 2 ∪i=1 Then,wehavewithChebychev’sinequalityandthewell-knownAM-GMinequalitythat e−βε Zv >ε e2βPv∈V1′Zv + e2βPv∈V2′Zv forβ >0. P vX∈V′ !≤ 2 nEh i Eh io Hence,itsufficestoconsiderthesum Z closer. Wewrite v∈V1′ v P S(i):= Z andJ(i):= Z fori=1,...,T. v v v∈∪Xii=1A(i) v∈XA(i) We computetheexpectationsoftherandomvariableseδS(i), forδ > 0sufficientlysmall. Notethatthedistancew.r.t. d betweenv A(i)andv′ A(i′),i=i′,isatleast2 logQ /logA . SinceS(i)=S(i 1)+J(i),weinferfrom G 2 ∈ ∈ 6 ⌈ ⌉ − Davydov’sinequalitygiveninPropositionA.1that eδS(i) =Cov(eδS(i−1),eδJ(i))+ eδS(i−1) eδJ(i) E E E h i h i h i 10α (f)1/a exp(δS(i 1)) exp(δJ(i)) + eδS(i−1) eδJ(i) (2.5) ≤ T k − kbk k∞ E E h i h i forHo¨lderconjugatea,b 1andf :=2 logQ /logA . Furthermore,wehaveif δJ(i) 1/(2e)that 2 ≥ ⌈ ⌉ | |≤ expδJ(i) 1+δJ(i)+δ2J(i)2. ≤ NowtherandomvariablesZ areessentiallyboundedbyC. Letβ (A 1)/(4eCP (AP 1))anddefineδ := 2β. v 2 ≤ − − 5 Then,wehave AP 1 1 δJ(i) δCP − , hence, [δJ(i)] exp δ2 J(i)2 . 2 | |≤ A 1 ≤ 2e E ≤ E − (cid:0) (cid:2) (cid:3)(cid:1) Note that in the subgraphinduced by the A(i) there are exactly N(P,k) pairsof nodes(v,w) with d (v,w) = k G 1,...,2(P 1) ,whereN(P,k)isgiveninLemma2.1. Forthenexttwolinesweusetheinequality( n a )2 ∈ { − } i=1 i ≤ n2 n a2forrealnumbersa ,i=1,...,n,n . Consequently,weget i=1 i i ∈N P P J(i)2 = Z2 + [Z Z ] E E v E v w (cid:2) (cid:3) v∈XA(i) (cid:2) (cid:3) v,wX∈A(i), v6=w AP 1 2(P−1) (P )2 − σ2+4C2 α (k)N(P,k) =:K ≤ 2  A 1 T   − Xk=1  withDavydov’sinequalityfromPropositionA.1.  Furthermore,we find with the Ho¨lder inequalitythat exp(δS(i 1)) exp(δS(i 1)) . Thus, equation(2.5) k − k1 ≤ k − kb canbeboundedby [exp(δS(i))] 10α (f)1/a exp(δJ(i) +exp(δ2K) exp(δS(i 1)) . (2.6) E ≤ T k k∞ k − kb n o Especially, for the case i = T successive iteration of (2.6) yieldsfor the choicea := T +1 and b = 1+1/T (as in Valenzuela-Dom´ınguezandFranke(2005)) [exp(δS(T))] exp 10√eα (f)1/(T+1)(T 1)+δ2eKT . T E ≤ { − } Next,sinceα (f) 1and1/(1+T) P2+Q2 ,wearriveat T ≤ ≥ 2(P2+Q2)+AL AL exp 2β Z exp 10√eα (f)(P2+Q2)/(2(P2+Q2)+AL) v T E  ≤ P +Q vX∈V1′ (cid:26) 2 2(cid:27)    AP 1 2(P−1) AL exp 4β2e(P )2 − σ2+4C2 α (k)N(P,k) +1 . ·  2  A 1 T  P +Q   − kX=1 (cid:18) 2 2 (cid:19)     The computations for exp 2β Z are similar and one achieves the same bounds for this term. This E v∈V2′ v finishestheproof. h (cid:16) (cid:17)i P Wearenowinpositiontoderiveaconcentrationinequality. Weconsideraninfinitetreewhichgrowsatanexponential rateAandwhichisendowedwitharandomfieldZ. WeassumethattherandomfieldZ onthetreeT isstrongmixing suchthat α (k)N(P,k) O PAP , (2.7) T ∈ k∈ XN (cid:0) (cid:1) where N(P,k) is defined in Lemma 2.1. We say that the mixingcoefficientsdecayat a super-exponential(orhyper- exponential)rateifthereisapositiveincreasingfunctiongwithlim g(n)= suchthat n→∞ ∞ α (n) exp( ng(n)). (2.8) T ≤ − In this case, equation (2.7) follows from Lemma 2.1 with the bound N(P,k) O PAP+k/2 and the following ∈ concentrationinequalityistrue (cid:0) (cid:1) Theorem 2.3 (Concentration inequality for exponentially growing trees). Let T = (V,E) be a tree growing at an 6 exponentialrateAandletZ bearandomfieldonT asinTheorem2.2. Lettherandomfieldbestrongmixingw.r.t.the graphmetricwithα-mixingcoefficientswhichfulfill(2.7),e.g.,themixingcoefficientsdecayatasuper-exponentialrate asin(2.8). ConsiderthesubgraphwhichconsistsofthefirstLgenerationsofT forL ∈N V = (j,k) V :0 j L 1, 1 k AL−1 . L ∈ ≤ ≤ − ≤ ≤ (cid:8) (cid:9) Thenthereareconstantsc ,c suchthatforallL andε>0 1 2 + ∈R ∈N 1 L Z >ε c exp c ε . v 1 2 P |VL|(cid:12)(cid:12)vX∈VL (cid:12)(cid:12) !≤ (cid:26)− logL(cid:27) (cid:12) (cid:12) (cid:12) (cid:12) Thismeanstheprobabilitydecaysasymptot(cid:12)icallyat(cid:12)aratewhichisapproximatelylinearinthesizeofthesampleVL. ProofofTheorem2.3. LetP := Lη forsomeη (0,1). WepartitionV inthefollowingway: firstwedefinethe 1 L ⌊ ⌋ ∈ wedgewhichconsistofthefirstL P generations 1 − W := (j,k) V : 0 j <L P . L L 1 { ∈ ≤ − } TheremainingP generationsarecollectedin 1 U := (j,k) V : L P j <L . L L 1 { ∈ − ≤ } The sums which correspond to these partitioning are S := Z and S := Z . Then we split the L v∈WL v L v∈UL v probabilityasfollows, P P e ε ε Z >ε V S > V + S > V (2.9) v L L L L L P (cid:12) (cid:12) | |!≤P | | 2| | P | | 2| | (cid:12)vX∈VL (cid:12) (cid:16) (cid:17) (cid:16) (cid:17) (cid:12) (cid:12) e (cid:12) (cid:12) Thefirstprobabilityin(2.9)i(cid:12)snegligib(cid:12)lebecausewefind ε AL−P1 1 εAL 1 S > V 2C − > − . L L P | | 2| | ≤ 1 A 1 2 A 1 (cid:16) (cid:17) (cid:26) − − (cid:27) e Thus,wecanfocusonthesecondprobabilityin(2.9). WeuseTheorem2.2. Wemakethefollowingdefinitions AL−P1 P :=Q := D logL , forasufficientlylargeconstantD 2 2 + L P ∈R (cid:22) − 1 (cid:23) A 1 logP β := − andf :=2 2 . 4eCP (AP1 1) logA 2 − (cid:24) (cid:25) Consider the exponentof the first factor given in (2.4): one findsthat there is a constantc which doesneither + ∈ R dependonLnoronεnorontheZ suchthat v ε L exp β V exp cε . (2.10) L −2 | | ≤ − logL n o (cid:26) (cid:27) Thesecondfactorin(2.4)isgivenby exp B√eα (f)2P2/(4P2+AL−P1)AL−P1 . (2.11) T 2P (cid:26) 2 (cid:27) Wecanderivethefollowingboundforthemixingcoefficientandtheexponentinsidetheexp-functionin(2.11) α (f)2P2/(4P2+AL−P1) exp D logL 1+ log(DlogL/(L−P1)) . T ≤ −5 (L P )logA (cid:26) (cid:18) − 1 (cid:19)(cid:27) 7 Consider the second factor inside the exp-function in (2.11), it is AL−P1/P (L P )/logL. In particular, the 2 1 ≤ − secondfactorin(2.11)isuniformlyboundedforallL ifDissufficientlylarge.Considerthethirdfactorin(2.4). + ∈N Sincethemixingcoefficientsdecaysufficientlyfast,wecanderivethefollowinginequality AP1 1 2(P1−1) AL−P1 P (L P ) exp 4eβ2(P )2 − σ2+4C2 N(P ,k)α (k) +1 exp c 1 − 1 ,  2  A 1 1 T  2P ≤ AP1logL  − Xk=1 (cid:18) 2 (cid:19) (cid:26) (cid:27)   forasuitableconstantc . Inparticular,thisexpressionisuniformlyboundedoverallL . Allinall, we have ∈ R ∈ N shownthatthereareconstantsc ,c suchthatforthesecondprobabilityin(2.9)isboundedas 1 2 + ∈R ε L S > V c c ε , L L 1 2 P | | 2| | ≤ P − logL (cid:16) (cid:17) (cid:18) (cid:19) where,theasymptoticspeedisdeterminedby(2.10). Thiscompletestheproof. Theprevioustheoremcanbeappliedtoexponentiallygrowinggraphsaswell,wehavetheusefulcorollary: Corollary2.4(Concentrationinequalityforexponentiallygrowinggraphs). LetG = (V,E′ E˜)beagraphgrowing ∪ atanexponentialrateAendowedwitharandomfieldZ asinTheorem2.3. Thenthereareconstantsc ,c such 1 2 + ∈R thatforallL andε>0 ∈N 1 L Z >ε c exp c ε . v 1 2 P |VL|(cid:12)(cid:12)vX∈VL (cid:12)(cid:12) !≤ (cid:26)− logL(cid:27) (cid:12) (cid:12) (cid:12) (cid:12) ProofofCorollary2.4. We only need to sh(cid:12)ow that(cid:12)the mixing conditions for the tree T = (V,E′) are fulfilled. The conditionthatS :=sup d (v,w) (v,w) E˜ < impliesthat T { | ∈ } ∞ d (v,w) T 1 d (v,w) d (v,w). G T ∨ S ≤ ≤ Inparticular,themixingratesw.r.t.thetreeandthewholegraphstructuresatisfyasymptoticallytheinequalityrelations α ( S ) α α . Thus,wecanconcludethestatementfromTheorem2.3. T G T ⌈ ·⌉ ≤ ≤ A Appendix PropositionA.1(Davydov(1973)). Let(Ω,A, )beaprobabilityspaceandletG,H Abesub-σ-algebras.Denote P ⊆ byα:=sup (A B) (A) (B) : A G,B G theα-mixingcoefficientbetweenGandH. Letp,q,r 1be {|P ∩ −P P | ∈ ∈ } ≥ Ho¨lderconjugate.Letξ(resp. η)beinLp( )andG-measurable(resp. inLq( )andH-measurable).Then P P Cov(ξ,η) 10α1/r ξ η | |≤ k kLp( )k kLq( ) P P References SergeBernstein. Surl’extensionduthe´ore`melimite ducalculdesprobabilite´sauxsommesdequantite´sde´pendantes. MathematischeAnnalen,97(1):1–59,1927. Richard C. Bradley. Basic properties of strong mixing conditions. a survey and some open questions. Probability surveys,2(2):107–144,2005. WłodzimierzBrycandAmirDembo. Largedeviationsandstrongmixing. InAnnalesdel’IHPProbabilite´setstatis- tiques,volume32,pages549–569,1996. 8 M. Carbon. Ine´galite´ de Bernstein pour les processus fortementme´langeantsnon ne´cessairementstationnaires. C.R. Acad.Sc.ParisI,297:303–306,1983. RobertF.Cohen,PeterEades,TaoLin,andFrankRuskey. Three-dimensionalgraphdrawing. InInternationalSympo- siumonGraphDrawing,pages1–11.Springer,1994. Ge´rardCollomb. Proprie´te´sdeconvergencepresquecomple`tedupre´dicteura`noyau. Zeitschriftfu¨rWahrscheinlichkeit- stheorieundverwandteGebiete,66(3):441–460,1984. YuriiA.Davydov.MixingconditionsforMarkovchains. TeoriyaVeroyatnosteiieePrimeneniya,18(2):321–338,1973. PaulDoukhan. Mixing,volume85ofLectureNotesinStatistics. Springer-Verlag,NewYork,1994. La´szlo´Gyo¨rfi,MichaelKohler,AdamKrz˙yzak,andHarroWalk.Adistribution-freetheoryofnonparametricregression. SpringerBerlin,NewYork,Heidelberg,2002. La´zlo´ Gyo¨rfi, Wolfgang Ha¨rdle, Pascal Sarda, and Philippe Vieu. Nonparametric curve estimation from time series, volume60. Springer,1989. WassilyHoeffding. Probabilityinequalitiesforsumsofboundedrandomvariables. JournaloftheAmericanstatistical association,58(301):13–30,1963. Casimir Kuratowski. Sur le problemedescourbesgauchesen topologie. Fundamentamathematicae,15(1):271–283, 1930. FlorenceMerleve`de,MagdaPeligrad,andEmmanuelRio. Bernsteininequalityandmoderatedeviationsunderstrong mixingconditions,volumeVolume5ofCollections,pages273–292.InstituteofMathematicalStatistics,Beachwood, Ohio,USA,2009. Eduardo Valenzuela-Dom´ınguezand Ju¨rgen Franke. A Bernstein inequality for strongly mixing spatial random pro- cesses. Technicalreport, Preprintseries of the DFG priority program1114 “Mathematicalmethodsfor time series analysisanddigitalimageprocessing”,January2005. KlausWagner. U¨bereineEigenschaftderebenenKomplexe. MathematischeAnnalen,114(1):570–590,1937. 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.