organic compounds ActaCrystallographicaSectionE b=10.8574(3)A˚ MoK(cid:5)radiation Structure Reports c=17.4630(6)A˚ (cid:6)=0.32mm(cid:4)1 (cid:4)=126.438(2)(cid:2) T=295K Online V=2227.29(14)A˚3 0.32(cid:5)0.16(cid:5)0.14mm ISSN1600-5368 Z=8 Datacollection 6-Chloro-N-(2-methoxyphenyl)pyridazin- BrukerKappaAPEXIICCD 17904measuredreflections 3-amine diffractometer 4387independentreflections Absorptioncorrection:multi-scan 2815reflectionswithI>2(cid:2)(I) (SADABS;Bruker,2005) R =0.027 int Abdul Qayyum Ather,a,b M. Nawaz Tahir,c* Tmin=0.938,Tmax=0.957 Muhammad Naeem Khan,b Misbahul Ain Khana and Refinement Muhammad Makshoof Athard R[F2>2(cid:2)(F2)]=0.039 291parameters wR(F2)=0.110 H-atomparametersconstrained aDepartmentofChemistry,IslamiaUniversity,Bahawalpur,Pakistan,bApplied S=1.03 (cid:2)(cid:7)max=0.20eA˚(cid:4)3 ChemistryResearchCenter,PCSIRLaboratoriescomplex,Lahore54600,Pakistan, 4387reflections (cid:2)(cid:7)min=(cid:4)0.21eA˚(cid:4)3 cUniversityofSargodha,DepartmentofPhysics,Sargodha,Pakistan,anddInstituteof Chemistry,UniversityofthePunjab,Lahore,Pakistan Correspondencee-mail:[email protected] Table 1 Received7January2012;accepted13January2012 Hydrogen-bondgeometry(A˚,(cid:2)). D—H(cid:3)(cid:3)(cid:3)A D—H H(cid:3)(cid:3)(cid:3)A D(cid:3)(cid:3)(cid:3)A D—H(cid:3)(cid:3)(cid:3)A Keyindicators:single-crystalX-raystudy;T=295K;mean(cid:2)(C–C)=0.004A˚; Rfactor=0.039;wRfactor=0.110;data-to-parameterratio=15.1. N3—H3(cid:3)(cid:3)(cid:3)O1 0.86 2.14 2.579(3) 111 N3—H3(cid:3)(cid:3)(cid:3)N4 0.86 2.48 3.278(2) 155 N6—H6A(cid:3)(cid:3)(cid:3)N1i 0.86 2.44 3.270(3) 161 The asymmetric unit of the title compound, C H ClN O, C2—H2(cid:3)(cid:3)(cid:3)Cl2ii 0.93 2.79 3.526(2) 137 11 10 3 C3—H3A(cid:3)(cid:3)(cid:3)N5 0.93 2.61 3.503(3) 161 contains two geometrically different molecules, A and B, in C6—H6(cid:3)(cid:3)(cid:3)N2 0.93 2.31 2.913(4) 122 bothofwhichthepyridazineringsareessentiallyplanarwith C17—H17(cid:3)(cid:3)(cid:3)N5 0.93 2.50 2.992(3) 113 r.m.s. deviations of 0.0137 and 0.0056A˚, respectively. In Symmetrycodes:(i)x;yþ1;z;(ii)(cid:4)xþ1;y;(cid:4)zþ1. 2 molecule A, the dihedral angle between the pyridazine and benzeneringsis6.5(2)(cid:2),whereasinmoleculeBitis27.93(7)(cid:2). Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT In molecule B, an intramolecular N—H(cid:3)(cid:3)(cid:3)O hydrogen bond (Bruker, 2009); data reduction: SAINT; program(s) used to solve forms an S(5) ring motif. In both molecules, S(6) ring motifs structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine are present due to non-classical C—H(cid:3)(cid:3)(cid:3)N hydrogen bonds. structure: SHELXL97 (Sheldrick, 2008); molecular graphics: The (cid:3)–(cid:3) interactions between the pyridazine rings of A ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software molecules [3.4740(13)A˚] and B molecules [3.4786(17)A˚] usedtopreparematerialforpublication:WinGX(Farrugia,1999)and have very similar centroid–centroid separations. (cid:3)–(cid:3) Inter- PLATON. actions also occur between the benzene rings of B molecules with a centroid–centroid separation of 3.676(2)A˚ and a The authors acknowledge the provision of funds for the slippageof1.02A˚.Inthecrystal,themoleculesarelinkedinto purchase of diffractometer and encouragement by Dr chains extending along [010] by C—H(cid:3)(cid:3)(cid:3)N and C—H(cid:3)(cid:3)(cid:3)Cl Muhammad Akram Chaudhary, Vice Chancellor, University interactions. of Sargodha, Pakistan. The authors also acknowledge the technicalsupportprovidedbySyedMuhammadHussainRizvi Related literature of Bana International, Karachi, Pakistan. For general background and related structures, see: Ather et al.(2010a,b,c;2011).Forgraph-set notation, see:Bernstein et Supplementary data and figures for this paper are available from the al.(1995). IUCrelectronicarchives(Reference:RK2330). References Ather,A.Q.,Tahir,M.N.,Khan,M.A.&Athar,M.M.(2010a).ActaCryst. E66,o2107. Ather,A.Q.,Tahir,M.N.,Khan,M.A.&Athar,M.M.(2010b).ActaCryst. E66,o2499. Ather,A.Q.,Tahir,M.N.,Khan,M.A.&Athar,M.M.(2011).ActaCryst. Experimental E67,o1020. Ather, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M.& Bueno, E. A. S. Crystaldata (2010c).ActaCryst.E66,o2493. C H ClNO Monoclinic,P2=c Bernstein,J.,Davis,R.E.,Shimoni,L.&Chang,N.-L.(1995).Angew.Chem. 11 10 3 M =235.67 a=14.6018(5)A˚ Int.Ed.Engl.34,1555-1573. r o438 Atheretal. doi:10.1107/S1600536812001535 ActaCryst.(2012).E68,o438–o439 organic compounds Bruker(2005).SADABS.BrukerAXSInc.,Madison,Wisconsin,USA. Farrugia,L.J.(1999).J.Appl.Cryst.32,837–838. Bruker(2009).APEX2andSAINT.BrukerAXSInc.,Madison,Wisconsin, Sheldrick,G.M.(2008).ActaCryst.A64,112–122. USA. Spek,A.L.(2009).ActaCryst.D65,148–155. Farrugia,L.J.(1997).J.Appl.Cryst.30,565. o439 ActaCryst.(2012).E68,o438–o439 Atheretal. (cid:6) C11H10ClN3O supplementary materials supplementary materials Acta Cryst. (2012). E68, o438-o439 [ doi:10.1107/S1600536812001535 ] 6-Chloro-N-(2-methoxyphenyl)pyridazin-3-amine A. Q. Ather, M. N. Tahir, M. N. Khan, M. A. Khan and M. M. Athar Comment In continuation to 6-chloropyridazin derivatives (Ather et al., 2010a,b,c; 2011), the title compound I (Fig. 1) is being reported here. The two molecules in the asymmetric unit are present, which differ from each other geometrically. In one molecule, the pyridazin ring A (C1-C4/N1/N2) and the phenyl ring B (C5-C10) are planar with r. m. s. deviation of 0.0137Å and 0.0065Å, respectively. The dihedral angle between A/B is 6.5 (2)°. In second molecule, the pyridazin ring C (C12-C15/N4/N5) and the phenyl ring D (C16-C21) are planar with r. m. s. deviation of 0.0056 and 0.0053Å, respectively and the dihedral angle between C/D is 27.93 (7)°. In the more planar molecule, there exists classical intramolecular H-bonding of N–H···O type (Table 1, Fig. 2) with S(5) ring motif (Bernstein et al., 1995). In both molecules S(6) ring motifs are formed due to non- classical C–H···N type of H-bondings (Table 1, Fig. 2). The molecules are interlinked due to the H-bondings of C–H···N and C–H···Cl types (Table 1, Fig. 2) to form the one dimensional polymeric chains extending along [0 1 0]. There exist i i π–π interactions between the centroids of a phenyl and two pyridazin rings with CgA···CgA = 3.4740 (13)Å, CgC···CgC = ii 3.4786 (17)Å and CgD···CgD = 3.676 (2)Å (slippage = 1.021Å), where CgA, CgC and CgD are the centroids of the rings A, C and D, respectively. Symmetry codes: (i) 1-x, y, 1/2-z; (ii) -x, 1-y, -z. Experimental An equimolar quantity (6.71 mmol) of 3,6-dichloropyradizine and 2-methoxyaniline in 10 ml of ethanol was heated under reflux for 3 h. The reaction mixture was concentrated under reduced pressure, cooled and poured over 50 ml of distilled water. The precipitate was filtered and dried in oven on 333 K. The dried crude product was recrystallized in ethanol to obtain colourless needles of I. Refinement The H-atoms were positioned geometrically (C–H = 0.93-0.96Å, N–H = 0.86Å) and refined as riding with U (H) = xU (C, iso eq N), where x = 1.5 for methyl groups and x = 1.2 for other H atoms. Figures Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellips- oids are drawn at the 30% probability level. The H atoms are shown as small spheres of arbit- rary radii. sup-1 supplementary materials Fig. 2. Packing diagram of the title compound showing that molecules form one dimensional polymeric chains along [0 1 0]. 6-Chloro-N-(2-methoxyphenyl)pyridazin-3-amine Crystal data C11H10ClN3O F(000) = 976 Mr = 235.67 Dx = 1.406 Mg m−3 Monoclinic, P2/c Mo Kα radiation, λ = 0.71073 Å Hall symbol: -P 2yc Cell parameters from 773 reflections a = 14.6018 (5) Å θ = 2.4–25.3° b = 10.8574 (3) Å µ = 0.32 mm−1 c = 17.4630 (6) Å T = 295 K β = 126.438 (2)° Needle, colourless V = 2227.29 (14) Å3 0.32 × 0.16 × 0.14 mm Z = 8 Data collection Bruker Kappa APEXII CCD 4387 independent reflections diffractometer Radiation source: fine-focus sealed tube 2815 reflections with I > 2σ(I) graphite Rint = 0.027 Detector resolution: 8.0 pixels mm-1 θmax = 26.0°, θmin = 1.9° ω scans h = −17→18 Absorption correction: multi-scan k = −13→12 (SADABS; Bruker, 2005) Tmin = 0.938, Tmax = 0.957 l = −21→21 17904 measured reflections Refinement Primary atom site location: structure-invariant direct Refinement on F2 methods Least-squares matrix: full Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring R[F2 > 2σ(F2)] = 0.039 sites wR(F2) = 0.110 H-atom parameters constrained w = 1/[σ2(Fo2) + (0.048P)2 + 0.3696P] S = 1.03 where P = (Fo2 + 2Fc2)/3 4387 reflections (Δ/σ)max < 0.001 sup-2 supplementary materials 291 parameters Δρmax = 0.20 e Å−3 0 restraints Δρmin = −0.21 e Å−3 Special details Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention- al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. 2 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å ) x y z Uiso*/Ueq Cl1 0.46850 (6) −0.13866 (5) 0.05144 (5) 0.0738 (2) O1 0.24223 (15) 0.23518 (15) 0.32088 (12) 0.0808 (7) N1 0.36545 (16) −0.13820 (14) 0.13098 (13) 0.0619 (6) N2 0.32177 (15) −0.08784 (14) 0.17449 (13) 0.0607 (7) N3 0.28781 (15) 0.08591 (15) 0.23280 (13) 0.0659 (7) C1 0.40898 (17) −0.06681 (16) 0.10082 (14) 0.0523 (7) C2 0.41035 (19) 0.06066 (17) 0.10578 (15) 0.0626 (8) C3 0.3676 (2) 0.11179 (16) 0.14842 (16) 0.0645 (9) C4 0.32520 (17) 0.03400 (16) 0.18478 (14) 0.0528 (7) C5 0.23884 (17) 0.0334 (2) 0.27383 (15) 0.0622 (8) C6 0.2125 (2) −0.0903 (2) 0.26998 (19) 0.0792 (10) C7 0.1651 (3) −0.1314 (3) 0.3150 (2) 0.1053 (16) C8 0.1428 (3) −0.0507 (3) 0.3617 (2) 0.1073 (14) C9 0.1660 (2) 0.0735 (3) 0.36443 (19) 0.0881 (11) C10 0.21385 (19) 0.1147 (2) 0.32131 (16) 0.0673 (9) C11 0.2238 (3) 0.3246 (3) 0.3706 (2) 0.0938 (11) Cl2 0.56300 (6) 0.35556 (5) 0.46367 (4) 0.0777 (2) O2 0.08261 (14) 0.73892 (13) −0.00138 (12) 0.0856 (7) N4 0.40277 (16) 0.36064 (13) 0.28154 (14) 0.0582 (7) N5 0.32848 (15) 0.41352 (13) 0.19496 (13) 0.0575 (6) N6 0.25123 (16) 0.59100 (15) 0.10279 (14) 0.0722 (7) C12 0.47012 (18) 0.42988 (16) 0.35550 (15) 0.0537 (7) C13 0.47274 (19) 0.55815 (17) 0.35300 (17) 0.0622 (8) C14 0.3991 (2) 0.61149 (17) 0.26792 (17) 0.0655 (9) C15 0.32556 (18) 0.53634 (16) 0.18843 (16) 0.0550 (8) C16 0.15632 (19) 0.54289 (18) 0.01765 (16) 0.0592 (8) C17 0.1480 (2) 0.4246 (2) −0.01534 (18) 0.0705 (9) C18 0.0498 (3) 0.3871 (2) −0.10086 (19) 0.0834 (10) C19 −0.0397 (2) 0.4662 (3) −0.15407 (19) 0.0842 (11) C20 −0.0322 (2) 0.5845 (2) −0.12320 (19) 0.0760 (10) sup-3 supplementary materials C21 0.0649 (2) 0.62309 (19) −0.03823 (17) 0.0633 (9) C22 −0.0100 (3) 0.8233 (3) −0.0472 (2) 0.1089 (13) H2 0.43954 0.10860 0.08075 0.0752* H3 0.29570 0.16458 0.23890 0.0791* H3A 0.36609 0.19688 0.15370 0.0775* H6 0.22645 −0.14566 0.23738 0.0949* H7 0.14864 −0.21451 0.31319 0.1261* H8 0.11179 −0.07923 0.39190 0.1288* H9 0.14920 0.12855 0.39529 0.1058* H11A 0.26440 0.30060 0.43607 0.1408* H11B 0.14394 0.32969 0.34210 0.1408* H11C 0.25074 0.40345 0.36695 0.1408* H6A 0.26458 0.66753 0.10045 0.0866* H13 0.52290 0.60433 0.40746 0.0747* H14 0.39682 0.69672 0.26167 0.0786* H17 0.20860 0.37019 0.02014 0.0846* H18 0.04463 0.30724 −0.12243 0.1002* H19 −0.10576 0.43986 −0.21125 0.1013* H20 −0.09290 0.63851 −0.15978 0.0912* H22A −0.07363 0.78708 −0.05266 0.1638* H22B −0.03118 0.84205 −0.10951 0.1638* H22C 0.01230 0.89754 −0.01038 0.1638* 2 Atomic displacement parameters (Å ) U11 U22 U33 U12 U13 U23 Cl1 0.1073 (5) 0.0477 (3) 0.0915 (4) 0.0106 (3) 0.0727 (4) 0.0023 (3) O1 0.1095 (13) 0.0681 (10) 0.0948 (12) 0.0036 (9) 0.0771 (11) −0.0063 (9) N1 0.0869 (13) 0.0357 (8) 0.0751 (12) −0.0041 (8) 0.0547 (11) −0.0027 (8) N2 0.0787 (13) 0.0389 (8) 0.0778 (13) −0.0060 (8) 0.0537 (11) −0.0029 (8) N3 0.0868 (14) 0.0455 (9) 0.0894 (14) 0.0022 (9) 0.0654 (12) 0.0000 (9) C1 0.0654 (13) 0.0360 (9) 0.0545 (13) 0.0019 (9) 0.0350 (11) 0.0012 (9) C2 0.0921 (17) 0.0368 (9) 0.0779 (16) −0.0039 (10) 0.0608 (14) 0.0000 (10) C3 0.0981 (18) 0.0305 (9) 0.0837 (16) −0.0042 (10) 0.0642 (15) −0.0031 (10) C4 0.0581 (13) 0.0406 (10) 0.0582 (13) 0.0001 (9) 0.0338 (11) 0.0015 (9) C5 0.0549 (13) 0.0675 (13) 0.0651 (14) −0.0018 (10) 0.0361 (12) 0.0015 (11) C6 0.0869 (18) 0.0732 (15) 0.099 (2) −0.0176 (13) 0.0670 (17) −0.0098 (14) C7 0.120 (3) 0.100 (2) 0.129 (3) −0.0425 (18) 0.092 (2) −0.0195 (19) C8 0.121 (2) 0.129 (3) 0.112 (2) −0.048 (2) 0.091 (2) −0.026 (2) C9 0.0869 (19) 0.113 (2) 0.0851 (19) −0.0225 (16) 0.0623 (17) −0.0181 (16) C10 0.0607 (15) 0.0811 (16) 0.0631 (15) −0.0031 (12) 0.0384 (13) −0.0040 (12) C11 0.122 (2) 0.0861 (18) 0.097 (2) 0.0192 (16) 0.0780 (19) −0.0074 (15) Cl2 0.1150 (5) 0.0491 (3) 0.0793 (4) 0.0085 (3) 0.0634 (4) 0.0085 (3) O2 0.0938 (13) 0.0507 (9) 0.0976 (12) 0.0108 (8) 0.0489 (11) 0.0039 (8) N4 0.0806 (13) 0.0349 (8) 0.0777 (13) 0.0005 (8) 0.0572 (11) −0.0002 (9) N5 0.0726 (12) 0.0352 (8) 0.0763 (12) −0.0019 (8) 0.0505 (11) −0.0007 (8) N6 0.0799 (14) 0.0406 (9) 0.0811 (14) −0.0046 (9) 0.0397 (12) 0.0088 (9) C12 0.0736 (14) 0.0378 (9) 0.0731 (14) 0.0029 (9) 0.0564 (13) 0.0027 (10) sup-4 supplementary materials C13 0.0846 (16) 0.0377 (10) 0.0767 (16) −0.0088 (10) 0.0546 (14) −0.0064 (10) C14 0.0877 (17) 0.0320 (9) 0.0839 (17) −0.0032 (10) 0.0549 (15) 0.0024 (10) C15 0.0677 (14) 0.0369 (10) 0.0758 (15) −0.0039 (9) 0.0510 (13) 0.0006 (10) C16 0.0677 (15) 0.0510 (11) 0.0696 (15) −0.0030 (11) 0.0466 (13) 0.0021 (11) C17 0.0809 (17) 0.0608 (13) 0.0805 (17) 0.0063 (12) 0.0537 (15) −0.0031 (12) C18 0.106 (2) 0.0732 (15) 0.0828 (19) −0.0028 (15) 0.0625 (19) −0.0188 (14) C19 0.0857 (19) 0.093 (2) 0.0746 (18) −0.0053 (16) 0.0480 (16) −0.0130 (15) C20 0.0761 (18) 0.0790 (16) 0.0781 (18) 0.0104 (13) 0.0487 (16) 0.0077 (14) C21 0.0755 (16) 0.0548 (12) 0.0738 (16) 0.0020 (11) 0.0521 (15) 0.0042 (11) C22 0.116 (2) 0.0680 (16) 0.137 (3) 0.0319 (16) 0.072 (2) 0.0163 (17) Geometric parameters (Å, °) Cl1—C1 1.731 (3) C2—H2 0.9300 Cl2—C12 1.737 (2) C3—H3A 0.9300 O1—C10 1.374 (3) C6—H6 0.9300 O1—C11 1.431 (4) C7—H7 0.9300 O2—C21 1.366 (3) C8—H8 0.9300 O2—C22 1.422 (4) C9—H9 0.9300 N1—N2 1.363 (3) C11—H11B 0.9600 N1—C1 1.296 (3) C11—H11C 0.9600 N2—C4 1.332 (2) C11—H11A 0.9600 N3—C5 1.399 (4) C12—C13 1.395 (3) N3—C4 1.365 (3) C13—C14 1.342 (3) N3—H3 0.8600 C14—C15 1.405 (3) N4—N5 1.358 (3) C16—C21 1.395 (4) N4—C12 1.301 (3) C16—C17 1.383 (3) N5—C15 1.337 (2) C17—C18 1.381 (4) N6—C15 1.356 (3) C18—C19 1.366 (5) N6—C16 1.399 (3) C19—C20 1.372 (4) N6—H6A 0.8600 C20—C21 1.374 (4) C1—C2 1.386 (3) C13—H13 0.9300 C2—C3 1.343 (4) C14—H14 0.9300 C3—C4 1.402 (4) C17—H17 0.9300 C5—C10 1.400 (4) C18—H18 0.9300 C5—C6 1.388 (3) C19—H19 0.9300 C6—C7 1.394 (5) C20—H20 0.9300 C7—C8 1.362 (5) C22—H22A 0.9600 C8—C9 1.384 (5) C22—H22B 0.9600 C9—C10 1.371 (4) C22—H22C 0.9600 C10—O1—C11 118.5 (3) H11B—C11—H11C 109.00 C21—O2—C22 118.5 (2) H11A—C11—H11B 110.00 N2—N1—C1 119.43 (16) O1—C11—H11B 109.00 N1—N2—C4 118.8 (2) O1—C11—H11C 109.00 C4—N3—C5 131.21 (18) H11A—C11—H11C 109.00 C5—N3—H3 114.00 O1—C11—H11A 109.00 C4—N3—H3 114.00 N4—C12—C13 124.4 (2) N5—N4—C12 119.61 (15) Cl2—C12—N4 116.94 (14) N4—N5—C15 118.73 (17) Cl2—C12—C13 118.68 (17) sup-5 supplementary materials C15—N6—C16 130.36 (18) C12—C13—C14 116.5 (2) C15—N6—H6A 115.00 C13—C14—C15 118.86 (18) C16—N6—H6A 115.00 N5—C15—C14 121.9 (2) N1—C1—C2 124.3 (2) N6—C15—C14 118.47 (17) Cl1—C1—C2 119.2 (2) N5—C15—N6 119.65 (19) Cl1—C1—N1 116.44 (15) C17—C16—C21 118.5 (2) C1—C2—C3 116.9 (2) N6—C16—C17 125.2 (2) C2—C3—C4 118.53 (18) N6—C16—C21 116.29 (19) N2—C4—C3 121.9 (2) C16—C17—C18 120.1 (3) N3—C4—C3 118.34 (17) C17—C18—C19 120.6 (2) N2—C4—N3 119.8 (2) C18—C19—C20 120.0 (3) N3—C5—C10 116.0 (2) C19—C20—C21 120.0 (3) N3—C5—C6 125.5 (2) C16—C21—C20 120.7 (2) C6—C5—C10 118.5 (3) O2—C21—C16 114.2 (2) C5—C6—C7 119.9 (3) O2—C21—C20 125.1 (2) C6—C7—C8 120.5 (3) C12—C13—H13 122.00 C7—C8—C9 120.5 (4) C14—C13—H13 122.00 C8—C9—C10 119.5 (3) C13—C14—H14 121.00 C5—C10—C9 121.1 (2) C15—C14—H14 121.00 O1—C10—C9 124.6 (3) C16—C17—H17 120.00 O1—C10—C5 114.3 (2) C18—C17—H17 120.00 C1—C2—H2 122.00 C17—C18—H18 120.00 C3—C2—H2 122.00 C19—C18—H18 120.00 C4—C3—H3A 121.00 C18—C19—H19 120.00 C2—C3—H3A 121.00 C20—C19—H19 120.00 C7—C6—H6 120.00 C19—C20—H20 120.00 C5—C6—H6 120.00 C21—C20—H20 120.00 C6—C7—H7 120.00 O2—C22—H22A 109.00 C8—C7—H7 120.00 O2—C22—H22B 109.00 C7—C8—H8 120.00 O2—C22—H22C 109.00 C9—C8—H8 120.00 H22A—C22—H22B 109.00 C8—C9—H9 120.00 H22A—C22—H22C 110.00 C10—C9—H9 120.00 H22B—C22—H22C 110.00 C11—O1—C10—C5 −177.8 (2) N3—C5—C6—C7 179.2 (3) C11—O1—C10—C9 1.7 (4) C10—C5—C6—C7 −1.7 (4) C22—O2—C21—C16 −172.8 (3) N3—C5—C10—O1 −0.4 (3) C22—O2—C21—C20 8.1 (5) C6—C5—C10—C9 1.0 (4) N2—N1—C1—C2 −3.0 (3) N3—C5—C10—C9 −179.8 (2) C1—N1—N2—C4 0.0 (3) C6—C5—C10—O1 −179.6 (2) N2—N1—C1—Cl1 177.09 (16) C5—C6—C7—C8 1.0 (5) N1—N2—C4—C3 2.9 (3) C6—C7—C8—C9 0.6 (5) N1—N2—C4—N3 −176.4 (2) C7—C8—C9—C10 −1.3 (5) C5—N3—C4—C3 177.8 (2) C8—C9—C10—O1 −178.9 (3) C5—N3—C4—N2 −2.9 (4) C8—C9—C10—C5 0.5 (4) C4—N3—C5—C6 −3.1 (4) Cl2—C12—C13—C14 −179.7 (3) C4—N3—C5—C10 177.8 (2) N4—C12—C13—C14 0.8 (5) C12—N4—N5—C15 −1.0 (4) C12—C13—C14—C15 0.0 (5) N5—N4—C12—Cl2 −179.8 (2) C13—C14—C15—N5 −1.3 (5) N5—N4—C12—C13 −0.3 (5) C13—C14—C15—N6 179.8 (3) sup-6 supplementary materials N4—N5—C15—C14 1.8 (4) N6—C16—C17—C18 −179.9 (3) N4—N5—C15—N6 −179.4 (3) C21—C16—C17—C18 −1.4 (5) C15—N6—C16—C17 −35.8 (5) N6—C16—C21—O2 0.8 (4) C16—N6—C15—N5 14.6 (5) N6—C16—C21—C20 180.0 (3) C16—N6—C15—C14 −166.5 (3) C17—C16—C21—O2 −177.8 (3) C15—N6—C16—C21 145.7 (3) C17—C16—C21—C20 1.4 (5) Cl1—C1—C2—C3 −177.19 (19) C16—C17—C18—C19 0.5 (6) N1—C1—C2—C3 2.9 (4) C17—C18—C19—C20 0.6 (6) C1—C2—C3—C4 0.1 (4) C18—C19—C20—C21 −0.7 (5) C2—C3—C4—N3 176.3 (2) C19—C20—C21—O2 178.8 (3) C2—C3—C4—N2 −3.0 (4) C19—C20—C21—C16 −0.3 (5) Hydrogen-bond geometry (Å, °) D—H···A D—H H···A D···A D—H···A N3—H3···O1 0.86 2.14 2.579 (3) 111 N3—H3···N4 0.86 2.48 3.278 (2) 155 N6—H6A···N1i 0.86 2.44 3.270 (3) 161 C2—H2···Cl2ii 0.93 2.79 3.526 (2) 137 C3—H3A···N5 0.93 2.61 3.503 (3) 161 C6—H6···N2 0.93 2.31 2.913 (4) 122 C17—H17···N5 0.93 2.50 2.992 (3) 113 Symmetry codes: (i) x, y+1, z; (ii) −x+1, y, −z+1/2. sup-7