ebook img

3-Cyano-11-oxo-3,4-seco-12a-aza-C-homoolean-4(23)-en-28-oic acid methyl ester. PDF

0.73 MB·English
by  FroelichA.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 3-Cyano-11-oxo-3,4-seco-12a-aza-C-homoolean-4(23)-en-28-oic acid methyl ester.

organic compounds ActaCrystallographicaSectionE (cid:5)=0.59mm(cid:4)1 0.45(cid:5)0.20(cid:5)0.12mm Structure Reports T=293K Online Datacollection ISSN1600-5368 KumaDiffractionKM-4 5045independentreflections diffractometer 4815reflectionswithI>2(cid:2)(I) Absorptioncorrection: scan R =0.038 3-Cyano-11-oxo-3,4-seco-12a-aza-C- int (Northetal.,1968) 2standardreflectionsevery100 homoolean-4(23)-en-28-oic acid methyl Tmin=0.830,Tmax=0.929 reflections 5219measuredreflections intensitydecay:2% ester Refinement R[F2>2(cid:2)(F2)]=0.039 Hatomstreatedbyamixtureof A. Froelich,a B. Bednarczyk-Cwynarb and A. K. Gzellab,c* wR(F2)=0.112 independentandconstrained S=1.07 refinement aDepartmentofPharmaceuticalTechnology,PoznanUniversityofMedicalSciences, 5045reflections (cid:2)(cid:6) =0.19eA˚(cid:4)3 max ul.Grunwaldzka6,60-780Poznan´,Poland,bDepartmentofOrganicChemistry, 337parameters (cid:2)(cid:6)min=(cid:4)0.18eA˚(cid:4)3 PoznanUniversityofMedicalSciences,ul.Grunwaldzka6,60-780Poznan´,Poland, 1restraint Absolutestructure:Flack(1983), andcFacultyofPharmacy,LudwikRydygierCollegiumMedicuminBydgoszcz, 2248Friedelpairs Flackparameter:0.0(2) NicolausCopernicusUniversityinTorun,ul.M.CurieSkłodowskiej9,85-094 Bydgoszcz,Poland Correspondencee-mail:[email protected] Table 1 Received14December2011;accepted23January2012 Hydrogen-bondgeometry(A˚,(cid:3)). Keyindicators:single-crystalX-raystudy;T=293K;mean(cid:2)(C–C)=0.003A˚; D—H(cid:2)(cid:2)(cid:2)A D—H H(cid:2)(cid:2)(cid:2)A D(cid:2)(cid:2)(cid:2)A D—H(cid:2)(cid:2)(cid:2)A Rfactor=0.039;wRfactor=0.112;data-to-parameterratio=15.0. C15—H15B(cid:2)(cid:2)(cid:2)O2i 0.97 2.57 3.508(3) 163 C31—H31B(cid:2)(cid:2)(cid:2)O1ii 0.96 2.43 3.357(3) 163 Symmetrycodes:(i)x(cid:4)1;y;z;(ii)x;y(cid:4)1;z. The title compound, C H N O , is a Beckmann rearrange- 31 48 2 3 ment product. The isopropenyl and methoxycarbonyl groups Data collection: KM-4 Software (Kuma Diffraction, 1996); cell have(cid:3)-orientations,whereasthe2-cyanoethylgrouphasan(cid:4)- refinement: KM-4 Software; data reduction: KM-4 Software; orientation.Inthetriterpenoidskeleton,theseven-membered program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); lactam ring, as well as the three six-membered carbocyclic program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); rings, have chair conformations. In the crystal, molecules are molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); soft- linkedvianonclassicalC—H(cid:2)(cid:2)(cid:2)Ohydrogenbondsintolayers ware used to prepare material for publication: WinGX (Farrugia, parallel tothe ab plane. 1999),PLATON(Spek,2009)andenCIFer(Allenetal.,2004). Related literature Supplementary data and figures for this paper are available from the IUCrelectronicarchives(Reference:FJ2500). For ring-puckering parameters, see: Cremer & Pople (1975). For a related structure, see: Froelich & Gzella (2010). For References bond-lengthdata,see:Allenetal.(1987).Forrelatedliterature Allen,F.H.,Johnson,O.,Shields,G.P.,Smith,B.R.&Towler,M.(2004).J. on the Beckmann rearrangement reaction, see: Bednarczyk- Appl.Cryst.37,335–338. Cwynar (2006). Allen,F.H.,Kennard,O.,Watson,D.G.,Brammer,L.,Orpen,A.G.&Taylor, R.(1987).J.Chem.Soc.PerkinTrans.2,pp.S1–19. Bednarczyk-Cwynar, B. (2006). PhD thesis, Poznan University of Medical Sciences,Poznan´,Poland. Cremer,D.&Pople,J.A.(1975).J.Am.Chem.Soc.97,1354–1358. Farrugia,L.J.(1997).J.Appl.Cryst.30,565. Farrugia,L.J.(1999).J.Appl.Cryst.32,837–838. Flack,H.D.(1983).ActaCryst.A39,876–881. Froelich,A.&Gzella,A.K.(2010).ActaCryst.E66,o2790. KumaDiffraction(1996).KM-4Software.KumaDiffraction,Wrocław,Poland. North,A.C.T.,Phillips,D.C.&Mathews,F.S.(1968).ActaCryst.A24,351– 359. Sheldrick,G.M.(2008).ActaCryst.A64,112–122. Spek,A.L.(2009).ActaCryst.D65,148–155. Experimental Crystaldata C H NO c=17.356(3)A˚ 31 48 2 3 M =496.71 (cid:3)=91.607(13)(cid:3) r Monoclinic,P2 V=1392.7(4)A˚3 a=6.8549(10)1A˚ Z=2 b=11.711(2)A˚ CuK(cid:4)radiation o532 Froelichetal. doi:10.1107/S1600536812002863 ActaCryst.(2012).E68,o532 supplementary materials supplementary materials Acta Cryst. (2012). E68, o532 [ doi:10.1107/S1600536812002863 ] 3-Cyano-11-oxo-3,4-seco-12a-aza-C-homoolean-4(23)-en-28-oic acid methyl ester A. Froelich, B. Bednarczyk-Cwynar and A. K. Gzella Comment The title compound was obtained from 3,12-dioxo-18β-olean-28-oic acid methyl ester as a product of the two-step synthesis. In the first step the diketone derivative mentioned above undergone the condensation with hydroxylamine hydrochloride to give the oxime derivative as a product. The latter reacted with POCl (Beckmann rearrangement reaction) (Bednarczyk- 3 Cwynar, 2006). The results of the X-ray analysis showed that the final product is 3-cyano-11-oxo-3,4-seco-12a-aza-C-ho- moolean-4(23)-en-28-oic acid methyl ester, (I), (Fig. 1). Molecular structure obtained in the course of the X-ray investigation showed that oxime derivative formation and Beckmann rearrangement reaction took place within two triterpenoid rings, i.e. A and C. In ring C Beckmann rearrangement reaction took place while in ring A Beckmann fragmentation was observed. As a result of Beckmann fragmentation C3—C4 bond cleavage and ring A opening were observed. In this process two new functions were formed. In C10 position 2-cyanoethyl group is observed. It reveals α-configuration and comprises of atoms C1, C2 and C3 of the original ring A. The linear fragment of this group consisting of atoms C2, C3 and N1 reveals conformation halfway between anticlinal and antiperiplanar (+ac/+ap) with respect to the C1—C10 bond [torsion angle C3—C2—C1—C10: 162.75 (17)°]. The C1—C2 bond is anticlinal (-ac) with respect to C5—C10 bond belonging to ring B [torsion angle C2—C1—C10—C25: 174.38 (15)°]. The other function formed as the result of the cleavage of ring A consists of atoms C4, C23 and C24. They form almost planar group (r.m.s. = 0.012 Å) along with C5 atom belonging to ring B. The dihedral angle between the mean plane of the new group and the least-squares plane of ring B is 67.10 (8)°. The C4═C23 double bond in isopropenyl residue reveals conformation halfway between synclinal and anticlinal (+sc/+ac) [torsion angle C23—C4—C5—C10: 93.3 (2)°]. The angular orientation of isopropenyl group described above is most probably caused by the sterical hindrance created by the cyanoethyl group. The axial methyl group C25 adopts β-orientation while hydrogen atom in C5 position reveals α-orientation. Thus, both of these substituents retain the orientation observed in oleanolic acid molecules (Froelich & Gzella, 2010). In the molecule of (I) the original six-membered carbocyclic ring C has been transformed into the seven-membered lactam ring in which nitrogen atom connects carbonyl group (C12═O1) and tertiary carbon atom C13. The C12—N2 bond distance of 1.338 (2) Å is comparable with the normal length of the single (C*—)NH—C(═O) bond in secondary amide which is 1.334 (1) Å (Allen et al., 1987). Seven-membered lactam ring adopts chair conformation {Cremer & Pople (1975) parameters: Q(2) = 0.388 (2) Å, Q(3) = 0.695 (2) Å, φ(2) = 319.8 (3)°, φ(3) = 282.53 (15)°}, as well as six-membered rings B, D and E. Rings B/C and C/D are trans-fused [the dihedral angles 16.63 (10) and 19.07 (10)°, respectively], while rings D/E are cis-fused [the dihedral angle 56.69 (7)°] sup-1 supplementary materials The planar ester group in C17 is attached axially to ring D and equatorially to ring E. Its carbonyl (C28═O2) group is synperiplanar (-sp) with respect to C17—C18 bond belonging to both D and E rings [torsion angle C18—C17—C28—O2: -6.5 (3)°]. i ii In the crystal lattice of (I) molecules are linked by nonclasical hydrogen bonds C15—H15B···O2 and C31—H31B···O1 (Tab. 1, Fig. 2) into layers parallel to the ab plane. In the molecule of (I) fourteen short H···H contacts are observed. The distances between related hydrogen atoms lie within the range of 1.92 - 2.20 Å. The short contacts are mainly the consequence of the presence of axial methyl groups C25, C26 and C27. Experimental The title compound was synthesized according to the procedure described by Bednarczyk-Cwynar (2006) and dissolved in hot ethanol. The solution was set aside to crystallize at room temperature. After a week block-shaped colourless single crystals suitable for X-ray experiments were obtained. Refinement Except for the amide H atom which was refined freely the remaining H atoms were placed in the idealized positions and were refined within the riding model approximation: C —H = 0.96 Å, C —H = 0.97 Å, C —H = 0.98 methyl methylene methine 2 Å, C(sp )—H = 0.93 Å; U (H) = 1.2U (C) or 1.5U (C) for methyl H. The methyl groups were refined as rigid groups iso eq eq which were allowed to rotate. Figures Fig. 1. The molecular structure of (I) showing the atomic labelling scheme. Non-H atoms are drawn as 30% probability displacement ellipsoids; H atoms are shown as small spheres of ar- bitrary radius. Fig. 2. The hydrogen bonding (dotted lines) in the title structure. Symmetry codes: (i) -1 + x, y, z; (ii) x, -1 + y, z. The H atoms have been ommitted for clarity. sup-2 supplementary materials 3-Cyano-11-oxo-3,4-seco-12a-aza-C-homoolean-4(23)-en-28-oic acid methyl ester Crystal data C31H48N2O3 F(000) = 544 Mr = 496.71 Dx = 1.184 Mg m−3 Monoclinic, P21 Melting point = 532–535 K Hall symbol: P 2yb Cu Kα radiation, λ = 1.54178 Å a = 6.8549 (10) Å Cell parameters from 45 reflections b = 11.711 (2) Å θ = 15.5–28.6° c = 17.356 (3) Å µ = 0.59 mm−1 β = 91.607 (13)° T = 293 K V = 1392.7 (4) Å3 Block, colourless Z = 2 0.45 × 0.20 × 0.12 mm Data collection Kuma Diffraction KM-4 4815 reflections with I > 2σ(I) diffractometer Radiation source: fine-focus sealed tube, Kuma Dif- fraction Rint = 0.038 graphite θmax = 70.2°, θmin = 2.6° ω–2θ scans h = −8→8 Absorption correction: ψ scan k = −14→14 (North et al., 1968) Tmin = 0.830, Tmax = 0.929 l = 0→21 5219 measured reflections 2 standard reflections every 100 reflections 5045 independent reflections intensity decay: 2% Refinement Hydrogen site location: inferred from neighbouring Refinement on F2 sites H atoms treated by a mixture of independent and Least-squares matrix: full constrained refinement R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.1756P] where P = (Fo2 + 2Fc2)/3 wR(F2) = 0.112 (Δ/σ)max < 0.001 S = 1.07 Δρmax = 0.19 e Å−3 5045 reflections Δρmin = −0.18 e Å−3 Extinction correction: SHELXL97 (Sheldrick, 2008), 337 parameters Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 1 restraint Extinction coefficient: 0.0184 (10) Primary atom site location: structure-invariant direct Absolute structure: Flack (1983), 2248 Friedel pairs methods Secondary atom site location: difference Fourier map Flack parameter: 0.0 (2) sup-3 supplementary materials Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance mat- rix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention- al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. 2 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å ) x y z Uiso*/Ueq O1 0.3886 (4) 0.87517 (15) 0.71870 (10) 0.0965 (7) O2 0.4487 (2) 0.37102 (14) 0.72260 (12) 0.0792 (5) O3 0.2567 (2) 0.22641 (11) 0.68910 (9) 0.0656 (4) N1 −0.1263 (4) 1.19826 (19) 0.83379 (15) 0.0912 (7) N2 0.2826 (2) 0.70494 (13) 0.67747 (10) 0.0504 (4) H2 0.314 (4) 0.726 (3) 0.6355 (18) 0.084 (9)* C1 −0.0113 (3) 0.92218 (16) 0.88714 (10) 0.0484 (4) H1A −0.0693 0.9579 0.9314 0.058* H1B 0.1275 0.9384 0.8901 0.058* C2 −0.0969 (3) 0.97888 (16) 0.81417 (11) 0.0562 (5) H2A −0.0133 0.9633 0.7712 0.067* H2B −0.2245 0.9467 0.8021 0.067* C3 −0.1146 (4) 1.10237 (19) 0.82451 (13) 0.0641 (5) C4 −0.3546 (3) 0.8199 (2) 0.97148 (12) 0.0584 (5) C5 −0.2600 (2) 0.76406 (15) 0.90290 (10) 0.0449 (4) H5 −0.3268 0.7956 0.8570 0.054* C6 −0.2932 (3) 0.63565 (16) 0.89948 (11) 0.0500 (4) H6A −0.2134 0.5986 0.9392 0.060* H6B −0.4289 0.6191 0.9093 0.060* C7 −0.2416 (2) 0.58875 (16) 0.82117 (11) 0.0495 (4) H7A −0.3225 0.6260 0.7819 0.059* H7B −0.2716 0.5078 0.8197 0.059* C8 −0.0243 (2) 0.60564 (14) 0.80163 (10) 0.0420 (4) C9 0.0337 (2) 0.73273 (13) 0.81839 (9) 0.0388 (3) H9 −0.0265 0.7767 0.7760 0.047* C10 −0.0390 (2) 0.79123 (15) 0.89403 (9) 0.0418 (3) C11 0.2557 (2) 0.75245 (16) 0.81192 (10) 0.0466 (4) H11A 0.2953 0.8133 0.8469 0.056* H11B 0.3240 0.6836 0.8282 0.056* C12 0.3157 (3) 0.78280 (16) 0.73271 (11) 0.0521 (4) C13 0.2185 (2) 0.58645 (13) 0.68730 (10) 0.0419 (4) H13 0.2982 0.5558 0.7303 0.050* C14 0.0016 (2) 0.57437 (14) 0.71198 (10) 0.0429 (4) sup-4 supplementary materials C15 −0.0613 (3) 0.44809 (16) 0.70120 (13) 0.0538 (4) H15A −0.0046 0.4037 0.7434 0.065* H15B −0.2020 0.4437 0.7049 0.065* C16 −0.0041 (3) 0.39319 (16) 0.62579 (13) 0.0578 (5) H16A −0.0676 0.4334 0.5832 0.069* H16B −0.0492 0.3147 0.6246 0.069* C17 0.2165 (3) 0.39543 (14) 0.61578 (12) 0.0501 (4) C18 0.2841 (3) 0.52108 (15) 0.61409 (11) 0.0469 (4) H18 0.4270 0.5187 0.6177 0.056* C19 0.2329 (3) 0.57702 (17) 0.53612 (11) 0.0590 (5) H19A 0.2837 0.6543 0.5364 0.071* H19B 0.0920 0.5819 0.5302 0.071* C20 0.3130 (4) 0.51322 (19) 0.46598 (12) 0.0624 (5) C21 0.2325 (4) 0.3926 (2) 0.46791 (14) 0.0715 (6) H21A 0.0920 0.3956 0.4597 0.086* H21B 0.2861 0.3494 0.4258 0.086* C22 0.2779 (3) 0.33091 (18) 0.54247 (14) 0.0646 (5) H22A 0.4173 0.3167 0.5462 0.077* H22B 0.2127 0.2574 0.5410 0.077* C23 −0.4447 (3) 0.9196 (2) 0.96374 (17) 0.0760 (7) H23A −0.5091 0.9510 1.0052 0.091* H23B −0.4436 0.9581 0.9169 0.091* C24 −0.3574 (4) 0.7587 (3) 1.04708 (13) 0.0835 (8) H24A −0.4138 0.8073 1.0850 0.125* H24B −0.2264 0.7392 1.0631 0.125* H24C −0.4337 0.6903 1.0416 0.125* C25 0.0781 (2) 0.75743 (19) 0.96750 (10) 0.0543 (5) H25A 0.2152 0.7610 0.9578 0.081* H25B 0.0441 0.6811 0.9821 0.081* H25C 0.0481 0.8091 1.0084 0.081* C26 0.0951 (3) 0.52295 (17) 0.85416 (12) 0.0538 (4) H26A 0.1185 0.5578 0.9036 0.081* H26B 0.2176 0.5065 0.8310 0.081* H26C 0.0234 0.4533 0.8604 0.081* C27 −0.1286 (3) 0.64964 (18) 0.65913 (11) 0.0548 (4) H27A −0.1193 0.6242 0.6068 0.082* H27B −0.0862 0.7276 0.6630 0.082* H27C −0.2616 0.6441 0.6746 0.082* C28 0.3206 (3) 0.33311 (16) 0.68200 (13) 0.0541 (4) C29 0.2405 (6) 0.5741 (3) 0.39255 (14) 0.0924 (9) H29A 0.2930 0.5369 0.3484 0.139* H29B 0.2826 0.6523 0.3939 0.139* H29C 0.1006 0.5712 0.3893 0.139* C30 0.5346 (4) 0.5125 (2) 0.46669 (15) 0.0751 (6) H30A 0.5832 0.4725 0.5115 0.113* H30B 0.5821 0.5896 0.4678 0.113* H30C 0.5787 0.4750 0.4212 0.113* C31 0.3545 (4) 0.1580 (2) 0.74689 (16) 0.0755 (6) H31A 0.4916 0.1751 0.7478 0.113* sup-5 supplementary materials H31B 0.3353 0.0786 0.7351 0.113* H31C 0.3022 0.1746 0.7964 0.113* 2 Atomic displacement parameters (Å ) U11 U22 U33 U12 U13 U23 O1 0.163 (2) 0.0509 (9) 0.0781 (11) −0.0462 (11) 0.0488 (12) −0.0174 (8) O2 0.0640 (8) 0.0526 (8) 0.1192 (14) −0.0056 (7) −0.0295 (9) 0.0127 (9) O3 0.0747 (9) 0.0372 (7) 0.0850 (10) −0.0067 (6) 0.0025 (7) 0.0040 (7) N1 0.1190 (19) 0.0544 (12) 0.0995 (17) 0.0080 (12) −0.0102 (13) −0.0030 (12) N2 0.0647 (9) 0.0359 (8) 0.0514 (9) −0.0096 (7) 0.0137 (7) −0.0032 (7) C1 0.0469 (8) 0.0499 (10) 0.0484 (9) −0.0059 (7) 0.0021 (7) −0.0074 (8) C2 0.0689 (11) 0.0442 (10) 0.0554 (10) −0.0012 (8) 0.0012 (8) 0.0003 (8) C3 0.0760 (13) 0.0505 (12) 0.0658 (12) −0.0003 (10) 0.0005 (10) −0.0003 (10) C4 0.0417 (8) 0.0764 (14) 0.0574 (10) −0.0092 (9) 0.0090 (7) −0.0123 (10) C5 0.0358 (7) 0.0533 (10) 0.0455 (8) −0.0014 (7) 0.0021 (6) 0.0021 (8) C6 0.0387 (8) 0.0535 (10) 0.0581 (10) −0.0040 (7) 0.0052 (7) 0.0099 (8) C7 0.0395 (8) 0.0430 (9) 0.0663 (11) −0.0070 (7) 0.0043 (7) 0.0014 (8) C8 0.0368 (7) 0.0372 (8) 0.0520 (9) −0.0013 (6) −0.0001 (6) 0.0034 (7) C9 0.0356 (7) 0.0385 (8) 0.0421 (8) −0.0017 (6) −0.0005 (6) 0.0034 (6) C10 0.0368 (7) 0.0466 (9) 0.0420 (8) −0.0027 (6) 0.0016 (6) 0.0015 (7) C11 0.0382 (7) 0.0499 (10) 0.0520 (9) −0.0083 (7) 0.0039 (6) −0.0052 (8) C12 0.0593 (10) 0.0396 (9) 0.0583 (10) −0.0107 (8) 0.0150 (8) −0.0049 (8) C13 0.0444 (8) 0.0297 (8) 0.0515 (9) −0.0032 (6) 0.0013 (7) −0.0017 (7) C14 0.0386 (8) 0.0343 (8) 0.0555 (9) 0.0009 (6) −0.0019 (6) −0.0026 (7) C15 0.0400 (8) 0.0403 (9) 0.0811 (12) −0.0073 (7) 0.0012 (8) −0.0086 (9) C16 0.0484 (9) 0.0410 (10) 0.0836 (13) −0.0042 (7) −0.0053 (9) −0.0159 (9) C17 0.0519 (9) 0.0326 (8) 0.0658 (11) −0.0014 (7) 0.0005 (8) −0.0095 (8) C18 0.0503 (9) 0.0349 (8) 0.0554 (10) −0.0004 (7) 0.0022 (7) −0.0054 (7) C19 0.0803 (13) 0.0431 (10) 0.0535 (10) 0.0060 (9) 0.0029 (9) −0.0057 (8) C20 0.0824 (13) 0.0531 (11) 0.0517 (10) 0.0031 (10) 0.0019 (9) −0.0118 (9) C21 0.0860 (15) 0.0590 (14) 0.0694 (13) −0.0053 (11) 0.0015 (11) −0.0255 (11) C22 0.0721 (12) 0.0412 (10) 0.0806 (14) −0.0029 (9) 0.0046 (10) −0.0187 (10) C23 0.0614 (12) 0.0778 (16) 0.0898 (16) 0.0003 (11) 0.0181 (11) −0.0285 (13) C24 0.0759 (14) 0.120 (2) 0.0555 (12) −0.0068 (15) 0.0195 (10) −0.0030 (14) C25 0.0429 (8) 0.0731 (13) 0.0466 (9) −0.0053 (8) −0.0033 (7) 0.0029 (9) C26 0.0505 (9) 0.0480 (10) 0.0627 (11) 0.0046 (8) 0.0000 (8) 0.0135 (9) C27 0.0556 (10) 0.0539 (11) 0.0542 (10) 0.0131 (8) −0.0081 (8) −0.0049 (8) C28 0.0470 (9) 0.0358 (9) 0.0798 (13) 0.0019 (7) 0.0067 (8) −0.0019 (8) C29 0.134 (3) 0.086 (2) 0.0564 (13) 0.0207 (17) −0.0029 (14) −0.0086 (13) C30 0.0873 (15) 0.0672 (14) 0.0718 (14) −0.0075 (12) 0.0212 (11) −0.0135 (11) C31 0.0926 (16) 0.0482 (11) 0.0861 (15) 0.0054 (11) 0.0117 (13) 0.0144 (11) Geometric parameters (Å, °) O1—C12 1.219 (2) C15—H15B 0.9700 O2—C28 1.196 (3) C16—C17 1.527 (3) O3—C28 1.331 (2) C16—H16A 0.9700 O3—C31 1.435 (3) C16—H16B 0.9700 sup-6 supplementary materials N1—C3 1.138 (3) C17—C28 1.522 (3) N2—C12 1.338 (2) C17—C18 1.543 (2) N2—C13 1.467 (2) C17—C22 1.548 (3) N2—H2 0.80 (3) C18—C19 1.535 (3) C1—C2 1.532 (3) C18—H18 0.9800 C1—C10 1.550 (3) C19—C20 1.542 (3) C1—H1A 0.9700 C19—H19A 0.9700 C1—H1B 0.9700 C19—H19B 0.9700 C2—C3 1.463 (3) C20—C21 1.517 (3) C2—H2A 0.9700 C20—C30 1.519 (3) C2—H2B 0.9700 C20—C29 1.531 (4) C4—C23 1.326 (4) C21—C22 1.507 (4) C4—C24 1.495 (3) C21—H21A 0.9700 C4—C5 1.519 (2) C21—H21B 0.9700 C5—C6 1.522 (3) C22—H22A 0.9700 C5—C10 1.560 (2) C22—H22B 0.9700 C5—H5 0.9800 C23—H23A 0.9300 C6—C7 1.517 (3) C23—H23B 0.9300 C6—H6A 0.9700 C24—H24A 0.9600 C6—H6B 0.9700 C24—H24B 0.9600 C7—C8 1.549 (2) C24—H24C 0.9600 C7—H7A 0.9700 C25—H25A 0.9600 C7—H7B 0.9700 C25—H25B 0.9600 C8—C26 1.548 (2) C25—H25C 0.9600 C8—C9 1.566 (2) C26—H26A 0.9600 C8—C14 1.613 (2) C26—H26B 0.9600 C9—C11 1.547 (2) C26—H26C 0.9600 C9—C10 1.574 (2) C27—H27A 0.9600 C9—H9 0.9800 C27—H27B 0.9600 C10—C25 1.540 (2) C27—H27C 0.9600 C11—C12 1.489 (2) C29—H29A 0.9600 C11—H11A 0.9700 C29—H29B 0.9600 C11—H11B 0.9700 C29—H29C 0.9600 C13—C18 1.560 (2) C30—H30A 0.9600 C13—C14 1.565 (2) C30—H30B 0.9600 C13—H13 0.9800 C30—H30C 0.9600 C14—C27 1.539 (2) C31—H31A 0.9600 C14—C15 1.550 (2) C31—H31B 0.9600 C15—C16 1.519 (3) C31—H31C 0.9600 C15—H15A 0.9700 C28—O3—C31 116.11 (18) C17—C16—H16B 109.3 C12—N2—C13 127.35 (16) H16A—C16—H16B 107.9 C12—N2—H2 114 (2) C28—C17—C16 110.53 (17) C13—N2—H2 119 (2) C28—C17—C18 109.67 (15) C2—C1—C10 116.57 (14) C16—C17—C18 108.51 (14) C2—C1—H1A 108.1 C28—C17—C22 104.70 (15) C10—C1—H1A 108.1 C16—C17—C22 112.22 (16) C2—C1—H1B 108.1 C18—C17—C22 111.15 (16) C10—C1—H1B 108.1 C19—C18—C17 111.23 (15) sup-7 supplementary materials H1A—C1—H1B 107.3 C19—C18—C13 116.38 (14) C3—C2—C1 110.99 (17) C17—C18—C13 111.02 (14) C3—C2—H2A 109.4 C19—C18—H18 105.8 C1—C2—H2A 109.4 C17—C18—H18 105.8 C3—C2—H2B 109.4 C13—C18—H18 105.8 C1—C2—H2B 109.4 C18—C19—C20 114.29 (16) H2A—C2—H2B 108.0 C18—C19—H19A 108.7 N1—C3—C2 178.7 (3) C20—C19—H19A 108.7 C23—C4—C24 119.6 (2) C18—C19—H19B 108.7 C23—C4—C5 120.5 (2) C20—C19—H19B 108.7 C24—C4—C5 119.8 (2) H19A—C19—H19B 107.6 C4—C5—C6 112.90 (15) C21—C20—C30 111.0 (2) C4—C5—C10 115.24 (14) C21—C20—C29 110.0 (2) C6—C5—C10 110.01 (14) C30—C20—C29 108.1 (2) C4—C5—H5 106.0 C21—C20—C19 107.21 (19) C6—C5—H5 106.0 C30—C20—C19 111.98 (19) C10—C5—H5 106.0 C29—C20—C19 108.49 (19) C7—C6—C5 110.75 (15) C22—C21—C20 113.50 (18) C7—C6—H6A 109.5 C22—C21—H21A 108.9 C5—C6—H6A 109.5 C20—C21—H21A 108.9 C7—C6—H6B 109.5 C22—C21—H21B 108.9 C5—C6—H6B 109.5 C20—C21—H21B 108.9 H6A—C6—H6B 108.1 H21A—C21—H21B 107.7 C6—C7—C8 113.56 (14) C21—C22—C17 114.66 (17) C6—C7—H7A 108.9 C21—C22—H22A 108.6 C8—C7—H7A 108.9 C17—C22—H22A 108.6 C6—C7—H7B 108.9 C21—C22—H22B 108.6 C8—C7—H7B 108.9 C17—C22—H22B 108.6 H7A—C7—H7B 107.7 H22A—C22—H22B 107.6 C26—C8—C7 106.68 (14) C4—C23—H23A 120.0 C26—C8—C9 110.97 (14) C4—C23—H23B 120.0 C7—C8—C9 108.74 (13) H23A—C23—H23B 120.0 C26—C8—C14 110.82 (14) C4—C24—H24A 109.5 C7—C8—C14 108.33 (13) C4—C24—H24B 109.5 C9—C8—C14 111.15 (13) H24A—C24—H24B 109.5 C11—C9—C8 111.94 (13) C4—C24—H24C 109.5 C11—C9—C10 109.32 (12) H24A—C24—H24C 109.5 C8—C9—C10 118.94 (13) H24B—C24—H24C 109.5 C11—C9—H9 105.1 C10—C25—H25A 109.5 C8—C9—H9 105.1 C10—C25—H25B 109.5 C10—C9—H9 105.1 H25A—C25—H25B 109.5 C25—C10—C1 104.82 (14) C10—C25—H25C 109.5 C25—C10—C5 110.57 (14) H25A—C25—H25C 109.5 C1—C10—C5 109.34 (14) H25B—C25—H25C 109.5 C25—C10—C9 114.13 (14) C8—C26—H26A 109.5 C1—C10—C9 108.89 (13) C8—C26—H26B 109.5 C5—C10—C9 108.95 (12) H26A—C26—H26B 109.5 C12—C11—C9 113.62 (15) C8—C26—H26C 109.5 C12—C11—H11A 108.8 H26A—C26—H26C 109.5 sup-8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.