organic compounds ActaCrystallographicaSectionE Experimental Structure Reports Crystaldata Online C H NO (cid:6)=92.440(17)(cid:2) 21 18 6 2 ISSN1600-5368 M =386.41 V=939.2(3)A˚3 r Triclinic,P1 Z=2 a=6.6362(8)A˚ MoK(cid:4)radiation 1H-Benzotriazol-1-yl 4-{(E)-[4-(dimethyl- b=11.384(3)A˚ (cid:7)=0.09mm(cid:4)1 c=13.022(3)A˚ T=293K amino)phenyl]diazenyl}benzoate (cid:4)=99.64(3)(cid:2) 0.3(cid:5)0.2(cid:5)0.2mm (cid:5)=103.61(2)(cid:2) Abdelkrim El-Ghayoury,a Leokadiya Zorinab and Mostafa Datacollection Khouilic* BrukerKappaCCDdiffractometer 18381measuredreflections Absorptioncorrection:multi-scan 4288independentreflections aLUNAMUniversite´,Universite´d’Angers,CNRSUMR6200,LaboratoireMOLTECH- (SADABS;Bruker,2008) 2107reflectionswithI>2(cid:2)(I) Anjou,CNRS-UMR6200,2bd.Lavoisier,49045Angers,France,bInstituteofSolid Tmin=0.697,Tmax=0.746 Rint=0.059 StatePhysics,RAS,142432ChernogolovkaMD,RussianFederation,and cLaboratoiredeChimieOrganiqueetAnalytique,Universite´SultanMoulaySlimane, Refinement Faculte´desSciencesetTechniques,BP523,23000Beni-Mellal,Morocco R[F2>2(cid:2)(F2)]=0.062 264parameters Correspondencee-mail:[email protected] wR(F2)=0.142 H-atomparametersconstrained S=1.04 (cid:2)(cid:8) =0.20eA˚(cid:4)3 max Received21December2012;accepted9January2013 4288reflections (cid:2)(cid:8) =(cid:4)0.18eA˚(cid:4)3 min Keyindicators:single-crystalX-raystudy;T=293K;mean(cid:2)(C–C)=0.003A˚; Rfactor=0.062;wRfactor=0.142;data-to-parameterratio=16.2. Table 1 Hydrogen-bondgeometry(A˚,(cid:2)). The title compound, C H N O , was obtained as a by- D—H(cid:3)(cid:3)(cid:3)A D—H H(cid:3)(cid:3)(cid:3)A D(cid:3)(cid:3)(cid:3)A D—H(cid:3)(cid:3)(cid:3)A 21 18 6 2 productofareactionbetween(E)-4-(4-dimethylaminophenyl- C4—H4(cid:3)(cid:3)(cid:3)N5i 0.93 2.63 3.415(3) 142 azo)benzoic acid and 2-amino-4-(2-pyridyl)-6-(6-pyridyl)- C23—H23(cid:3)(cid:3)(cid:3)N6ii 0.93 2.63 3.560(3) 176 1,3,5-triazine, which has a very low solubility, under peptidic Symmetrycodes:(i)(cid:4)xþ1;(cid:4)y;(cid:4)zþ2;(ii)xþ1;y;z. coupling conditions, using THFas solvent. The condensation reactionoccurredbetween1-hydroxybenzotriazoleand(E)-4- Data collection: COLLECT (Hooft, 1998); cell refinement: (4-dimethylaminophenylazo)benzoic acid.Thedihedralangle DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisen- between the benzene rings in the (E)-diphenyldiazene berg et al., 2003); program(s) used to solve structure: SHELXS97 fragment is 10.92(13)(cid:2) and that between the benzotriazole (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 mean plane and the central benzene ring is 80.57(7)(cid:2). In the (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: WinGX crystal, (cid:3)–(cid:3) stacking [centroid–centroid distances = 3.823(2) and 3.863(2)A˚] of similar fragments generates molecular (Farrugia,2012). layersparallelto(012).Thecrystalpackingalsofeaturesweak TheauthorsacknowledgetheCNRST(Morocco)forpartial C—H(cid:3)(cid:3)(cid:3)N hydrogen bonds involving N atoms of the financial support benzotriazole ring. Supplementary data and figures for this paper are available from the Related literature IUCrelectronicarchives(Reference:ZQ2193). For applications of 1-hydroxybenzotriazole in organic synth- eses, see: Ko¨nig & Geiger (1970); Miyazawa et al. (1984); References Baldinietal.(2008).Fortheuseof1-hydroxybenzotriazolein Baldini,L.,Sansone,F.,Faimani,G.,Massera,C.,Casnati,A.&Ungaro,R. the preparation of coordination compounds, see: Papaef- (2008).Eur.J.Org.Chem.5,869–886. Brandenburg,K.(2005).DIAMOND.CrystalImpactGbR,Bonn,Germany. stathiou et al. (2002). Bruker(2008).SADABS.BrukerAXSInc.,Madison,Wisconsin,USA. Duisenberg,A.J.M.(1992).J.Appl.Cryst.25,92–96. Duisenberg,A.J.M.,Kroon-Batenburg,L.M.J.&Schreurs,A.M.M.(2003). J.Appl.Cryst.36,220–229. Farrugia,L.J.(2012).J.Appl.Cryst.45,849–854. Hooft,R.W.W.(1998).COLLECT.NoniusBV,Delft,TheNetherlands. Ko¨nig,W.&Geiger,R.(1970).Chem.Ber.103,788–798. Miyazawa, T., Otomatsu, T., Yamada, T. & Kuwata, S. (1984). Tetrahedron Lett.25,771–772. Papaefstathiou,G.S.,Vicente,R.,Raptopoulou,C.P.,Terzis,A.,Escuer,A.& Perlepes,S.P.(2002).Eur.J.Inorg.Chem.9,2488–2493. Sheldrick,G.M.(2008).ActaCryst.A64,112–122. o262 El-Ghayouryetal. doi:10.1107/S1600536813000846 ActaCryst.(2013).E69,o262 supplementary materials supplementary materials Acta Cryst. (2013). E69, o262 [doi:10.1107/S1600536813000846] 1H-Benzotriazol-1-yl 4-{(E)-[4-(dimethylamino)phenyl]diazenyl}benzoate Abdelkrim El-Ghayoury, Leokadiya Zorina and Mostafa Khouili Comment 1-Hydroxybenzotriazole is a widely used compound in organic syntheses to decrease the racemization in the carbodi- imide peptide coupling (König et al., 1970) and especially in racemization-free condensation of aminoacids and peptidic fragments (Miyazawa et al., 1984). It has also been utilized to form a benzotriazolyl active ester (Baldini et al., 2008). Recently 1-hydroxybenzotriazole was used in the preparation of one-dimensional coordination polymers (Papaefstathiou et al., 2002). The molecular structure of the title compound is shown in Fig. 1. The diphenyldiazene fragment of the molecule is not planar (its benzene rings form a dihedral angle of 10.92 (13) °) and adopts an E conformation about the N2═N3 bond. The benzotriazolyl fragment (tautomer A) is essentially planar with an r.m.s. deviation of 0.010 (2) Å and is almost perpendicularly attached to the benzoate ring. The dihedral angles between mean plane of benzotriazolyl and two benzene rings, C3–C8 & C9–C14, are 88.57 (7) ° and 80.57 (7) °, respectively. In the crystal structure (Fig. 2) π-π stacking of the similar fragments generates molecular layers parallel to (012) [Cg1···Cg2i, 3.823 Å; Cg3···Cg3ii, 3.863 Å; Cg1, Cg2 and Cg3 are the centroids of the C3–C8, C9–C14 and C20–C25 rings, respectively; symmetry codes: (i) 1 + x, y, z; (ii) -3 - x, -1 - y, -1 - z]. Adjacent molecules inside and between the layers are linked additionally by weak C—H···N hydrogen bonds to N-atoms of the benzotriazolyl ring (the shortest H···N distances are 2.63 Å). Experimental The title compound, C H NO, was obtained as a byproduct of a reaction between (E)-4-(4-dimethylaminophenyl- 21 18 6 2 azo)benzoic acid and 2-amino-4-(2-pyridyl)-6-(6-pyridyl)-1,3,5-triazine, which is hardly soluble, under peptidic coupling condition. The condensation reaction has occurred between 1-hydroxybenzotriazole and (E)-4-(4-dimethylaminophenyl- azo)benzoic acid. Refinement Hydrogen atoms were located in a difference electron density map and refined in a riding model (including free rotation for methyl groups), with U (H) = 1.2 (1.5 for methyl groups) times U (C). iso eq Computing details Data collection: COLLECT (Hooft, 1998); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012). Acta Cryst. (2013). E69, o262 sup-1 supplementary materials Figure 1 The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Figure 2 Packing diagram of the title compound viewed along the a–axis. Hydrogen C—H···N bonds are shown as dashed lines. 1H-Benzotriazol-1-yl 4-{(E)-[4-(dimethylamino)phenyl]diazenyl}benzoate Crystal data C H NO Z = 2 21 18 6 2 M = 386.41 F(000) = 404 r Triclinic, P1 D = 1.366 Mg m−3 x Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å a = 6.6362 (8) Å Cell parameters from 4814 reflections b = 11.384 (3) Å θ = 3.7–27.6° c = 13.022 (3) Å µ = 0.09 mm−1 α = 99.64 (3)° T = 293 K β = 103.61 (2)° Prism, dark-red γ = 92.440 (17)° 0.3 × 0.2 × 0.2 mm V = 939.2 (3) Å3 Data collection Bruker KappaCCD Horizontally mounted graphite crystal diffractometer monochromator Radiation source: fine-focus sealed tube Detector resolution: 9 pixels mm-1 combined ω– and φ–scans Acta Cryst. (2013). E69, o262 sup-2 supplementary materials Absorption correction: multi-scan R = 0.059 int (SADABS; Bruker, 2008) θ = 27.6°, θ = 3.7° max min T = 0.697, T = 0.746 h = −8→8 min max 18381 measured reflections k = −14→14 4288 independent reflections l = −16→16 2107 reflections with I > 2σ(I) Refinement Refinement on F2 Secondary atom site location: difference Fourier Least-squares matrix: full map R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: difference Fourier map wR(F2) = 0.142 H-atom parameters constrained S = 1.04 w = 1/[σ2(F2) + (0.0421P)2 + 0.3933P] o 4288 reflections where P = (F2 + 2F2)/3 o c 264 parameters (Δ/σ) = 0.006 max 0 restraints Δρ = 0.20 e Å−3 max Primary atom site location: structure-invariant Δρ = −0.18 e Å−3 min direct methods Special details Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) x y z U */U iso eq C1 1.7674 (4) 0.3683 (3) 1.0813 (2) 0.0622 (8) H1A 1.8814 0.4273 1.0911 0.093* H1B 1.8198 0.2915 1.0858 0.093* H1C 1.6942 0.3894 1.1362 0.093* C2 1.7041 (4) 0.4217 (3) 0.9009 (2) 0.0616 (8) H2A 1.8431 0.4572 0.9338 0.092* H2B 1.6156 0.4828 0.8805 0.092* H2C 1.7048 0.3639 0.8382 0.092* C3 1.4360 (3) 0.3014 (2) 0.94775 (19) 0.0396 (6) C4 1.3631 (4) 0.2398 (2) 1.0190 (2) 0.0424 (6) H4 1.4470 0.2409 1.0874 0.051* C5 1.3021 (4) 0.2962 (2) 0.8449 (2) 0.0481 (7) H5 1.3452 0.3359 0.7958 0.058* C6 1.1699 (4) 0.1782 (2) 0.9887 (2) 0.0439 (6) H6 1.1252 0.1386 1.0373 0.053* C7 1.1107 (4) 0.2342 (2) 0.8161 (2) 0.0479 (7) H7 1.0259 0.2322 0.7478 0.057* C8 1.0396 (3) 0.1736 (2) 0.8874 (2) 0.0421 (6) C9 0.5372 (3) 0.0387 (2) 0.7486 (2) 0.0424 (6) C10 0.4539 (3) −0.0039 (2) 0.8252 (2) 0.0418 (6) Acta Cryst. (2013). E69, o262 sup-3 supplementary materials H10 0.5271 0.0114 0.8970 0.050* C11 0.4233 (4) 0.0191 (2) 0.6422 (2) 0.0527 (7) H11 0.4757 0.0504 0.5912 0.063* C12 0.2630 (3) −0.0688 (2) 0.7946 (2) 0.0421 (6) H12 0.2079 −0.0973 0.8459 0.051* C13 0.2336 (4) −0.0462 (2) 0.6120 (2) 0.0516 (7) H13 0.1591 −0.0600 0.5404 0.062* C14 0.1516 (3) −0.0921 (2) 0.6875 (2) 0.0405 (6) C15 −0.0433 (4) −0.1686 (2) 0.6479 (2) 0.0459 (6) C20 −0.4479 (3) −0.4709 (2) 0.64582 (19) 0.0422 (6) C21 −0.2442 (3) −0.4259 (2) 0.65840 (19) 0.0396 (6) C22 −0.5059 (4) −0.5924 (2) 0.6047 (2) 0.0531 (7) H22 −0.6414 −0.6247 0.5956 0.064* C23 −0.0905 (4) −0.4947 (2) 0.6317 (2) 0.0517 (7) H23 0.0451 −0.4627 0.6405 0.062* C24 −0.3566 (5) −0.6615 (2) 0.5784 (2) 0.0587 (8) H24 −0.3908 −0.7426 0.5512 0.070* C25 −0.1519 (4) −0.6131 (3) 0.5914 (2) 0.0591 (8) H25 −0.0548 −0.6633 0.5720 0.071* N1 1.6270 (3) 0.36337 (19) 0.97666 (17) 0.0496 (6) N2 0.8454 (3) 0.10799 (17) 0.86454 (18) 0.0453 (5) N3 0.7346 (3) 0.10456 (18) 0.77031 (18) 0.0494 (6) N4 −0.2534 (3) −0.30838 (18) 0.69602 (17) 0.0480 (6) N5 −0.4415 (3) −0.2807 (2) 0.70813 (18) 0.0565 (6) N6 −0.5633 (3) −0.3798 (2) 0.67744 (17) 0.0551 (6) O1 −0.1551 (3) −0.19039 (18) 0.55969 (16) 0.0682 (6) O2 −0.0874 (2) −0.22242 (15) 0.73157 (14) 0.0527 (5) Atomic displacement parameters (Å2) U11 U22 U33 U12 U13 U23 C1 0.0443 (15) 0.076 (2) 0.0604 (19) −0.0091 (14) 0.0009 (13) 0.0164 (16) C2 0.0521 (16) 0.0671 (19) 0.067 (2) −0.0110 (14) 0.0127 (14) 0.0212 (16) C3 0.0386 (13) 0.0351 (13) 0.0433 (15) 0.0008 (10) 0.0074 (11) 0.0068 (11) C4 0.0431 (14) 0.0460 (15) 0.0370 (14) −0.0008 (11) 0.0073 (11) 0.0098 (12) C5 0.0453 (15) 0.0531 (16) 0.0472 (16) −0.0056 (12) 0.0082 (12) 0.0198 (13) C6 0.0437 (14) 0.0479 (15) 0.0430 (16) −0.0001 (11) 0.0141 (12) 0.0122 (12) C7 0.0459 (15) 0.0501 (16) 0.0444 (16) −0.0017 (12) 0.0015 (12) 0.0146 (13) C8 0.0398 (13) 0.0386 (14) 0.0468 (16) 0.0004 (11) 0.0097 (11) 0.0075 (12) C9 0.0405 (14) 0.0362 (14) 0.0487 (16) −0.0021 (11) 0.0094 (12) 0.0068 (12) C10 0.0419 (14) 0.0373 (14) 0.0406 (15) 0.0002 (11) 0.0039 (11) 0.0014 (12) C11 0.0540 (16) 0.0581 (17) 0.0452 (17) −0.0100 (13) 0.0104 (13) 0.0138 (14) C12 0.0440 (14) 0.0382 (14) 0.0428 (16) −0.0001 (11) 0.0101 (11) 0.0055 (12) C13 0.0520 (16) 0.0558 (17) 0.0405 (16) −0.0077 (13) 0.0010 (12) 0.0084 (13) C14 0.0396 (13) 0.0334 (13) 0.0452 (16) −0.0007 (10) 0.0065 (11) 0.0044 (12) C15 0.0437 (15) 0.0435 (15) 0.0493 (17) −0.0021 (12) 0.0102 (13) 0.0087 (13) C20 0.0362 (13) 0.0580 (17) 0.0328 (14) −0.0067 (12) 0.0087 (10) 0.0113 (12) C21 0.0362 (13) 0.0451 (15) 0.0359 (14) −0.0049 (11) 0.0063 (10) 0.0089 (12) C22 0.0534 (16) 0.0613 (19) 0.0413 (16) −0.0204 (14) 0.0083 (12) 0.0119 (14) C23 0.0377 (14) 0.0608 (19) 0.0565 (18) 0.0011 (13) 0.0084 (12) 0.0160 (15) Acta Cryst. (2013). E69, o262 sup-4 supplementary materials C24 0.074 (2) 0.0464 (17) 0.0523 (18) −0.0070 (15) 0.0094 (15) 0.0118 (14) C25 0.0589 (18) 0.0575 (19) 0.0603 (19) 0.0110 (14) 0.0115 (14) 0.0120 (15) N1 0.0416 (12) 0.0570 (14) 0.0483 (13) −0.0109 (10) 0.0056 (10) 0.0157 (11) N2 0.0389 (11) 0.0432 (12) 0.0513 (14) −0.0021 (9) 0.0078 (10) 0.0076 (10) N3 0.0427 (12) 0.0479 (13) 0.0537 (15) −0.0060 (10) 0.0082 (10) 0.0063 (11) N4 0.0376 (12) 0.0490 (14) 0.0528 (14) −0.0105 (10) 0.0106 (10) 0.0007 (11) N5 0.0465 (13) 0.0686 (16) 0.0533 (15) 0.0000 (12) 0.0184 (11) 0.0007 (12) N6 0.0410 (12) 0.0723 (16) 0.0512 (14) −0.0088 (12) 0.0177 (10) 0.0032 (12) O1 0.0596 (12) 0.0825 (15) 0.0505 (13) −0.0235 (10) −0.0060 (10) 0.0137 (11) O2 0.0494 (10) 0.0538 (11) 0.0474 (11) −0.0177 (8) 0.0048 (8) 0.0041 (9) Geometric parameters (Å, º) C1—N1 1.449 (3) C11—C13 1.372 (3) C1—H1A 0.9600 C11—H11 0.9300 C1—H1B 0.9600 C12—C14 1.391 (3) C1—H1C 0.9600 C12—H12 0.9300 C2—N1 1.451 (3) C13—C14 1.391 (3) C2—H2A 0.9600 C13—H13 0.9300 C2—H2B 0.9600 C14—C15 1.461 (3) C2—H2C 0.9600 C15—O1 1.191 (3) C3—N1 1.362 (3) C15—O2 1.417 (3) C3—C4 1.410 (3) C20—N6 1.380 (3) C3—C5 1.413 (3) C20—C21 1.388 (3) C4—C6 1.372 (3) C20—C22 1.399 (3) C4—H4 0.9300 C21—N4 1.354 (3) C5—C7 1.365 (3) C21—C23 1.385 (3) C5—H5 0.9300 C22—C24 1.362 (4) C6—C8 1.389 (3) C22—H22 0.9300 C6—H6 0.9300 C23—C25 1.369 (4) C7—C8 1.396 (3) C23—H23 0.9300 C7—H7 0.9300 C24—C25 1.405 (4) C8—N2 1.404 (3) C24—H24 0.9300 C9—C11 1.389 (3) C25—H25 0.9300 C9—C10 1.392 (3) N2—N3 1.267 (3) C9—N3 1.425 (3) N4—N5 1.339 (3) C10—C12 1.376 (3) N4—O2 1.379 (2) C10—H10 0.9300 N5—N6 1.306 (3) N1—C1—H1A 109.5 C10—C12—H12 119.7 N1—C1—H1B 109.5 C14—C12—H12 119.7 H1A—C1—H1B 109.5 C11—C13—C14 120.6 (2) N1—C1—H1C 109.5 C11—C13—H13 119.7 H1A—C1—H1C 109.5 C14—C13—H13 119.7 H1B—C1—H1C 109.5 C13—C14—C12 119.0 (2) N1—C2—H2A 109.5 C13—C14—C15 117.4 (2) N1—C2—H2B 109.5 C12—C14—C15 123.6 (2) H2A—C2—H2B 109.5 O1—C15—O2 120.9 (2) N1—C2—H2C 109.5 O1—C15—C14 129.1 (2) H2A—C2—H2C 109.5 O2—C15—C14 110.0 (2) Acta Cryst. (2013). E69, o262 sup-5 supplementary materials H2B—C2—H2C 109.5 N6—C20—C21 109.7 (2) N1—C3—C4 121.6 (2) N6—C20—C22 130.7 (2) N1—C3—C5 121.3 (2) C21—C20—C22 119.6 (2) C4—C3—C5 117.1 (2) N4—C21—C23 134.8 (2) C6—C4—C3 120.8 (2) N4—C21—C20 101.5 (2) C6—C4—H4 119.6 C23—C21—C20 123.7 (2) C3—C4—H4 119.6 C24—C22—C20 117.5 (2) C7—C5—C3 121.2 (2) C24—C22—H22 121.3 C7—C5—H5 119.4 C20—C22—H22 121.3 C3—C5—H5 119.4 C25—C23—C21 115.4 (2) C4—C6—C8 121.7 (2) C25—C23—H23 122.3 C4—C6—H6 119.2 C21—C23—H23 122.3 C8—C6—H6 119.2 C22—C24—C25 121.6 (3) C5—C7—C8 121.3 (2) C22—C24—H24 119.2 C5—C7—H7 119.4 C25—C24—H24 119.2 C8—C7—H7 119.4 C23—C25—C24 122.3 (3) C6—C8—C7 117.9 (2) C23—C25—H25 118.9 C6—C8—N2 117.1 (2) C24—C25—H25 118.9 C7—C8—N2 125.0 (2) C3—N1—C1 122.1 (2) C11—C9—C10 119.6 (2) C3—N1—C2 121.0 (2) C11—C9—N3 115.5 (2) C1—N1—C2 116.8 (2) C10—C9—N3 124.9 (2) N3—N2—C8 114.5 (2) C12—C10—C9 119.8 (2) N2—N3—C9 113.9 (2) C12—C10—H10 120.1 N5—N4—C21 113.82 (19) C9—C10—H10 120.1 N5—N4—O2 119.6 (2) C13—C11—C9 120.2 (2) C21—N4—O2 126.21 (19) C13—C11—H11 119.9 N6—N5—N4 106.8 (2) C9—C11—H11 119.9 N5—N6—C20 108.21 (19) C10—C12—C14 120.7 (2) N4—O2—C15 112.84 (18) N1—C3—C4—C6 179.7 (2) C21—C20—C22—C24 −0.1 (4) C5—C3—C4—C6 −0.2 (3) N4—C21—C23—C25 −177.4 (3) N1—C3—C5—C7 −179.9 (2) C20—C21—C23—C25 −0.2 (4) C4—C3—C5—C7 0.0 (4) C20—C22—C24—C25 −0.3 (4) C3—C4—C6—C8 0.3 (4) C21—C23—C25—C24 −0.2 (4) C3—C5—C7—C8 0.1 (4) C22—C24—C25—C23 0.5 (4) C4—C6—C8—C7 −0.1 (4) C4—C3—N1—C1 0.9 (4) C4—C6—C8—N2 179.9 (2) C5—C3—N1—C1 −179.2 (2) C5—C7—C8—C6 −0.1 (4) C4—C3—N1—C2 177.1 (2) C5—C7—C8—N2 179.9 (2) C5—C3—N1—C2 −3.0 (4) C11—C9—C10—C12 2.3 (4) C6—C8—N2—N3 −178.6 (2) N3—C9—C10—C12 −178.6 (2) C7—C8—N2—N3 1.5 (3) C10—C9—C11—C13 −2.7 (4) C8—N2—N3—C9 −179.39 (19) N3—C9—C11—C13 178.2 (2) C11—C9—N3—N2 −171.6 (2) C9—C10—C12—C14 −0.2 (3) C10—C9—N3—N2 9.4 (3) C9—C11—C13—C14 0.9 (4) C23—C21—N4—N5 178.5 (3) C11—C13—C14—C12 1.2 (4) C20—C21—N4—N5 0.9 (3) C11—C13—C14—C15 −175.3 (2) C23—C21—N4—O2 −8.5 (4) C10—C12—C14—C13 −1.6 (3) C20—C21—N4—O2 173.9 (2) Acta Cryst. (2013). E69, o262 sup-6 supplementary materials C10—C12—C14—C15 174.7 (2) C21—N4—N5—N6 −0.7 (3) C13—C14—C15—O1 −7.1 (4) O2—N4—N5—N6 −174.2 (2) C12—C14—C15—O1 176.5 (3) N4—N5—N6—C20 0.1 (3) C13—C14—C15—O2 170.8 (2) C21—C20—N6—N5 0.5 (3) C12—C14—C15—O2 −5.6 (3) C22—C20—N6—N5 −178.6 (2) N6—C20—C21—N4 −0.8 (3) N5—N4—O2—C15 −99.1 (3) C22—C20—C21—N4 178.3 (2) C21—N4—O2—C15 88.3 (3) N6—C20—C21—C23 −178.8 (2) O1—C15—O2—N4 6.6 (3) C22—C20—C21—C23 0.4 (4) C14—C15—O2—N4 −171.51 (18) N6—C20—C22—C24 178.8 (3) Hydrogen-bond geometry (Å, º) D—H···A D—H H···A D···A D—H···A C4—H4···N5i 0.93 2.63 3.415 (3) 142 C23—H23···N6ii 0.93 2.63 3.560 (3) 176 Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1, y, z. Acta Cryst. (2013). E69, o262 sup-7