1. INTRODUCTION The general equilibrium theory has evolved into a very active research program, especially from the last quarter of the twentieth century, in which the economic authorities saw in the development of this theory, an empirical application very useful for economic purposes. The result of this intense performance has generated an interesting variety of uses in the field of fiscal, environmental, income distribution or impact economic analysis, including development policies. The starting point of this set of applications it is possible to located in the theory of Arrow and Debreu (1954) with their definition of competitive equilibrium. In this sense, Computable General Equilibrium models (CGE) have the ability to represent the functioning of markets at macroeconomic level, emboding consistency in microeconomic terms. Depicting and quantifying the functioning of the economy in both a general and a particular framework, and the behaviour of the different economic agents. Allowing, thus, to make sectoral and aggregate evaluations. These versatile models let the evaluation of impact or shock analysis in the economy too. Therefore, it is possible to face this kind of analysis focusing on techniques used originally in the interindustrial analysis. In this case, the object of this research is the calculation of key sectors in an economy using a general equilibrium model comparing their results with that obtained over the basis of a linear model. The empirical work will be address to the Andalusian economy during the period 1990‐2005, and the environment of comparison will be a CGE model in front a linear model based, in both cases, in the use of the Hypothetical Extraction Method´s approach (Dietzenbacher et al., 1993). Allowing us to observe the effects associated to the hypothetical elimination of an economic sector of the system. Providing, thus, an instrument of anlysis very useful for economic decisions. Early empirical works in this sense are in the works of Cardenete and Sancho (2006, 2012) in which they reconsidered the assessment and notion of strategic sectors within the economy. The results show sensible differences between linear and CGE models in order to an overestimation of importance of sectors in linear models due to the non‐consideration of constraints that have place in the CGE model, a more limitated assesments of impacts and a results closer to the economic reality. The structure of the chapter is organized as follows, Section 2 provides a conceptual description of the hipothetical extraction method model, in Section 3 the CGE model is presented, Section 4 contains a description of the database used (Social Accounting Matrices), later, in Section 5 thee results of the CGE model in front of the linear model are show, and finally, in section 6, the most relevant conclusions of the work developed are presented. 2. THE HYPOTHETICAL EXTRACTION METHOD This methodology is focused on the analysis of the multiplier effects pointing to the importance of a sector simulating their absence and measuring counterfactually in terms of lost output. Firstly proposed by Paelinck et al. (1965), later reinforced and filtered by Strassert (1968), Schultz (1977), Cella (1984), Clements (1990), Heimler (1991). In the evolution of the extraction methods it is possible to find in the work of Dietzenbacher et al. (1993) a versión with separated effects in backward (the sectors whose inputs are required) and forward effects (the sectors that receive the outputs), using partial eliminations of every sector. In this sense is considered non‐complete hypothetical extraction method, using demand model for backward linkages and supply model to obtain forward linkages, despite this feature (partial extraction), it is considered the more evolved and synthesising version of all. The implicit assumption that consider all the former aproaches is linearity of the elements of the economy. Under this methodology it is possible to obtain the effects of partial eliminations through the measurement of the difference of the economic activity within and without the activity extracted. Originally, the detection of key sectors have been directly addressed to extract information from Input‐Output Tables (IOTs). These are useful databases to describe intersectoral economic relations, containing certain restrictions inside, which in terms of behavior can lead to biased estimations. Some limitations of the interindustrial model were identified by Diamond (1974,1976). These works revealed the apparent lack of influence on the analysis of key sectors when final demand is left unexplained. Diamond argued these problems closing the Input‐Output model by the insertion of demand within the subsystem and using alternative coefficient vectors. However, this models that not contain a breakdown of components of final demand, so they do not account for the full flow of income within the system. For this last purpose, it is very useful to use a Social Accounting Matrix (SAM) to realize the pay back for the income factors to their owners and, in this sense, closing the circular flow of income. A SAM comprises a more detailed economic structure and lets a more complete comprehesion of the economy as a whole, incorporating and modeling households and primary factors as active elements of the economy. This extensión is a valuable contribution, but keeping the linearity of the system. When the assumption of linearity is put aside and and the classic dichotomy1 pointed out by Oosterhaven (1996) is questioned. It appeared the alternative to analyze and find equilibrium price and quantity simultaneously through a CGE model. This is what propose Cardenete et al (2013), where they performed a sequential extraction sectors and recomputed in each extraction levels of gross output and output sector through the equations of behavior of the economic agents comparing their results with a benchmark equilibrium. This extension of method of extraction not only changed output levels (as might be expected), but the order of the effects on the output when compared with the interindustrial (linear) model. Similarly, using a set of CGE simulations, Cardenete and Sancho (2012) modeled also the matrices of multipliers that are critically dependent on resource constraints and adjustments of general equilibrium, proving the existence of a limited and suggestive empirical evidence of missing links in linear models, which should be incorporated, for a broader assessment of changes in the system. For the application of Hypothetical Extraction Method, the starting point will be the elements of interindustrial analysis, an economy with a matrix A of technical coefficients and an exogenous vector of final demand D. Be X the vector of gross output, partitioning the matrix and subscript vectors representing economic flows between sectors of the economy, the total output could be expressed as: 1 Equilibrium in prices and quantities are independently determine of each others. (cid:1827) (cid:1827) ⋯ (cid:1827) ⋯ (cid:1827) (cid:1850) (cid:1830) (cid:2869)(cid:2869) (cid:2869)(cid:2870) (cid:2869)(cid:3037) (cid:2869)(cid:3041) (cid:2869) (cid:2869) (cid:1827) (cid:1827) ⋯ (cid:1827) ⋯ (cid:1827) (cid:1850) (cid:1830) (cid:1735) (cid:2870)(cid:2869) (cid:2870)(cid:2870) (cid:2870)(cid:3037) (cid:2870)(cid:3041)(cid:1738)(cid:1735) (cid:2870)(cid:1738) (cid:1735) (cid:2870)(cid:1738) ⋯ ⋯ ⋱ ⋯ ⋯ ⋯ ⋮ ⋮ (cid:1850) (cid:3404) (cid:1827)(cid:1850)(cid:3397)(cid:1830) (cid:3404) (cid:1736) (cid:1739)(cid:1736) (cid:1739) (cid:3397)(cid:1736) (cid:1739) (1) (cid:1736)(cid:1827)(cid:3037)(cid:2869) (cid:1827)(cid:3037)(cid:2870) ⋯ (cid:1827)(cid:3037)(cid:3037) ⋯ (cid:1827)(cid:3037)(cid:3041)(cid:1739)(cid:1736)(cid:1850)(cid:3037)(cid:1739) (cid:1736)(cid:1830)(cid:3037)(cid:1739) ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ ⋮ ⋮ (cid:1737)(cid:1827) (cid:1827) ⋯ (cid:1827) ⋯ (cid:1827) (cid:1740)(cid:1737)(cid:1850) (cid:1740) (cid:1737)(cid:1830) (cid:1740) (cid:3041)(cid:2869) (cid:3041)(cid:2870) (cid:3041)(cid:3037) (cid:3041)(cid:3041) (cid:3041) (cid:3041) Supposing that hypothetically a sector j is extracted in the sense that ceases to sells or purchase products or inputs from other sectors, the levels of final demand D require a vector of gross output (cid:1850)(cid:3364) such as: (cid:1827)(cid:2869)(cid:2869) (cid:1827)(cid:2869)(cid:2870) ⋯ 0 ⋯ (cid:1827)(cid:2869)(cid:3041) (cid:1850)(cid:3364)(cid:2869) (cid:1830)(cid:2869) (cid:1735)(cid:1827)(cid:2870)(cid:2869) (cid:1827)(cid:2870)(cid:2870) ⋯ 0 ⋯ (cid:1827)(cid:2870)(cid:3041)(cid:1738)(cid:1735)(cid:1850)(cid:3364)(cid:2870)(cid:1738) (cid:1735)(cid:1830)(cid:2870)(cid:1738) ⋯ ⋯ ⋱ ⋯ ⋯ ⋯ ⋮ ⋮ (cid:1850)(cid:3364) (cid:3404) (cid:1827)̅(cid:4666)(cid:2879)(cid:3037)(cid:4667)(cid:1850)(cid:3364)(cid:3397)(cid:1830) (cid:3404) (cid:1736)(cid:1736) 0 0 ⋯ 0 ⋯ 0 (cid:1739)(cid:1739)(cid:1736)(cid:1736)(cid:1736)(cid:1850)(cid:3364)(cid:3037)(cid:1739)(cid:1739)(cid:1739) (cid:3397)(cid:1736)(cid:1736)(cid:1830)(cid:3037)(cid:1739)(cid:1739) (2) ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ ⋮ ⋮ (cid:1737)(cid:1827)(cid:3041)(cid:2869) (cid:1827)(cid:3041)(cid:2870) ⋯ 0 ⋯ (cid:1827)(cid:3041)(cid:3041)(cid:1740)(cid:1737)(cid:1850)(cid:3364)(cid:3041)(cid:1740) (cid:1737)(cid:1830)(cid:3041)(cid:1740) Where (cid:1827)̅ is the matrix of technical coefficients once made the hypothetical removal of the (cid:4666)(cid:2879)(cid:3037)(cid:4667) sector j. Solving the reduced forms of the equation (1) and (2) and using ∆(cid:1850) to denote the (cid:4666)(cid:2879)(cid:3037)(cid:4667) differential output after removing j sector: ∆(cid:1850) (cid:3404) (cid:1850)(cid:3398)(cid:1850)(cid:3364) (cid:3404) (cid:4672)(cid:4666)(cid:1835)(cid:3398)(cid:1827)(cid:4667)(cid:2879)(cid:2869)(cid:3398)(cid:3435)(cid:1835)(cid:3398)(cid:1827)̅ (cid:3439)(cid:2879)(cid:2869)(cid:4673) (cid:1830) (3) (cid:4666)(cid:2879)(cid:3037)(cid:4667) (cid:4666)(cid:2879)(cid:3037)(cid:4667) The difference vector ∆(cid:1850) in equation (3) indicates the loss of sectoral output if the sector (cid:1862) (cid:4666)(cid:2879)(cid:3037)(cid:4667) is hypothetically eliminated. A chain of extractions in every sector is performed: (cid:1827)̅ , (cid:3365)(cid:1827) , (cid:1827)̅ ,…,(cid:1827)̅ and the differential output is evaluated. It is clear that a higher (cid:4666)(cid:2879)(cid:2869)(cid:4667) (cid:4666)(cid:2879)(cid:2870)(cid:4667) (cid:4666)(cid:2879)(cid:2871)(cid:4667) (cid:4666)(cid:2879)(cid:3041)(cid:4667) aggregate output lost associated with the extracted sector, it reveals a greater relevance of interconnections of it in the economy. In this sense it can be called as key sector and the links with other sectors are significant for the economy (Miller and Lahr, 2001). Note that in equation (3) the vector (cid:1830) remains constant, the difference vector (cid:1850)(cid:3398)(cid:1850)(cid:3364) shows that the scope of extraction sectors decreases total levels of required inputs to continue to provide the final demand D. So, when the technological matrix A is replaced, even hypothetically by a matrix (cid:1827) , a chain (cid:4666)(cid:2879)(cid:3037)(cid:4667) of reactions in quantity and price allocation will take place in order to reach this new (hypothetical) equilibrium. When this chain of reactions is studied under a general equilibrium model we can estimate shock induced effects and to identify which sectors, if removed, could promote the most changes. In this case, the consideration of final demand as endogenous can capture the effects of income settings. As an exogenous shock, usually derived from an economic policy measure, it can be visualized as a monetary injection into the system, eliminating flows from one sector to the others can be considered an impact, all the sectors react to the absence of one of them. Linear models justify the provision of the necessary inputs of extracted sectors appealing to a foreign sector that acts as a perfect substitute supplier, so, there are no supply constraints. However, integrating this technique in a CGE model, supply constraints are incorporated in the system and this fact brings us closer to reality. The inherent complexity of the model will miss the original linearity and require numerical calculations for resolution. In this case consumers, firms, labor and capital will have supply constraints inside the circular flow of income (Shoven & Whalley, 1984). Supply constraints and price interconnections explain the differences between the results of linear models regarding CGE. So an initial injection within a sector is not able to activate other output increases. More primary factors are needed to meet the additional demand for a sector requirements substracting them from somewhere in the economy, and triggering sectoral output variations not covered by other models. So, the Hypothetical Extraction Method, using a SAM a starting point, is a versatile approach to evaluate the performance of different sectors in linear and non‐linear models. 3. THE CGE MODEL Technically, a CGE is an abstract mathematical‐computational representation that captures the interrelationships between economic sectors and the behavior of the different agents of the economy in a consistent and systematic way. This kind of models, which are based on the optimization of economic agents, technological specifications or macroeconomic identities, are commonly based on the assumption of perfect information, and allows to study the effects, both direct and indirect, of an exogenous change economic policy or the impact of a shock on the economic system determining its results. The CGE have a neoclassical structure of agents' behavior in which prices clear markets absorbing excess of demand. They provide new perspectives on resource allocation and income distribution, being especially suitable for the assessment of impacts on the economy and widely used in specific areas such as the evaluation of tax systems, trade policy, or social or environmental impacts among other fields of application. At the same time, the large amount of different studies under this methodology have demonstrated the potential of these models as predictive tools when they face economic shocks. 3.1. The base model The CGE model applied to achieve the objective proposed remains the traditional doctrine of walrasian equilibrium present in the works of Scarf and Shoven (1984), Ballard et al. (1985) or Shoven and Whalley (1992), extended with the inclusion of public and foreign sector. Production technology is given by a nested production function, yielding domestic output combining labor and capital as primary factors, through a Leontief technology. So, we will start from a price model to culminate in a general equilibrium model applied, following Cardenete and Sancho (2003). The asumption respect activity levels of public and external sectors is to consider they are fixed, while relative prices and activity levels of productive sectors are considered like endogenous variables, a representative consumer is included in the model in a scenario of perfect competition, using the SAM of Andalucia for each period of analysis. The equations for the model are the following: 3.1.1 Production The production technology is determined by a nested production function. The domestic output of sector j, denoted by (cid:1850)(cid:1856) , is obtained by combining, through a Leontief technology of (cid:3037) outputs from other sectors and value added ((cid:1848)(cid:1827) ). (cid:3037) The model has 25 productive sectors from the SAM of Andalusia for each period: (cid:1850) (cid:1850) (cid:1850) (cid:1848)(cid:1827) (cid:2869)(cid:3037) (cid:2870)(cid:3037) (cid:2870)(cid:2873)(cid:3037) (cid:3037) (cid:1850)(cid:1856) (cid:3404) min(cid:4678) , ,…, , (cid:4679) (cid:1862) (cid:3404) 1,2,…,25 (cid:4666)4(cid:4667) (cid:3037) (cid:1853) (cid:1853) (cid:1853) (cid:1874) (cid:2869)(cid:3037) (cid:2869)(cid:3037) (cid:2870)(cid:2873)(cid:3037) (cid:3037) Being (cid:1850) the corresponding quantities of good i required for the domestic production of good (cid:3036)(cid:3037) j; (cid:1853) are the technical coefficients obtained from the accounting multipliers matrix of the SAM (cid:3036)(cid:3037) and they depict the proportion of purchases from sector i to sector j for the production of a unit of good j. The value added by the sector j is determined by (cid:1848)(cid:1827) , and (cid:1874) represents the (cid:3037) (cid:3037) mínimum quantity of value added required to produce a unit of good j. Inside the Value Added, in a second level it is possible to find the technology of combination (fixed coefficients) of primary factors labor (L) and capital (K): (cid:1837) (cid:1838) (cid:3037) (cid:3037) (cid:1848)(cid:1827) (cid:3404) (cid:1865)(cid:1861)(cid:1866)(cid:4678) , (cid:4679) (cid:1862) (cid:3404) 1,2,…,25 (cid:4666)5(cid:4667) (cid:3037) (cid:1863) (cid:1864) (cid:3037) (cid:3037) The total output of sector (cid:1862), (cid:1843) , it is obtained from a combination of domestic output in a (cid:3037) Leontief technology production. Following the Armington (1969) hypothesis for imports (cid:1850)(cid:1870)(cid:1867)(cid:1875) , in this domestic production and imports are considered like imperfect substitutives: (cid:3037) (cid:1843) (cid:3404) min(cid:3435)(cid:1850)(cid:1856) ,(cid:1850)(cid:1870)(cid:1867)(cid:1875) (cid:3439) (cid:1862) (cid:3404) 1,2,…,25 (cid:4666)6(cid:4667) (cid:3037) (cid:3037) (cid:3037) 3.1.2 Consumption The representative consumer has a demand function formulated by Cobb‐Douglas preferences. The objective of this agent (h), it is to maximice its welfare, subject to a budget constraint. The disposable income it is distributed between current consumption ((cid:1829) ) or (cid:3037)(cid:3035) future consumption ((cid:1845) ) materialized by savings: (cid:3035) (cid:3041) (cid:1839)(cid:1853)(cid:1876) (cid:1847) (cid:3435)(cid:1829) ,(cid:1845) (cid:3439) (cid:3404) (cid:4684)(cid:3537)(cid:1829)(cid:3080)(cid:3285)(cid:3283)(cid:4685)(cid:1845)(cid:3081)(cid:3283) (cid:1862) (cid:3404) 1,2,…,25 (cid:4666)7(cid:4667) (cid:3035) (cid:3037)(cid:3035), (cid:3035) (cid:3037)(cid:3035) (cid:3035) (cid:3037)(cid:2880)(cid:2869) (cid:1871).(cid:1872). (cid:1851)(cid:1830)(cid:1835)(cid:1845)(cid:1842) (cid:3404) (cid:1868) (cid:1829) (cid:3397)(cid:1861)(cid:1866)(cid:1874)(cid:1868) (cid:1845) (cid:3035) (cid:3037) (cid:3037)(cid:3035) (cid:3035) Where (cid:2009) and (cid:2010) are the coefficients of participation corresponding to different goods or savings, respectively, and, in this sense, the demand elasticity of goods and savings. The market demand is the sum of individual demand of consumers, according to a walrasian market. The final demand is consisting of investements, exports and final consumption from households. Being (cid:1868) the price of good (cid:1862) and (cid:1861)(cid:1866)(cid:1874)(cid:1868) the price of investment goods for the consumer (cid:1860). The (cid:3037) aggregation of the disposable income for all the households will determine the disposable income for the whole economy. The financing of those incomes comes from the sell of primary factors that consumers own (work and capital) from their initial endowments. They pay taxes, receive transfers, consume public goods and make net transfers with the rest of the world, investing and saving too. The disposable income for consumption will aggregate gross income less direct taxes: (cid:1851)(cid:1830)(cid:1835)(cid:1845)(cid:1842) (cid:3404) (cid:1875)(cid:1838)(cid:3397)(cid:1870)(cid:1837)(cid:3397)(cid:1861)(cid:1868)(cid:1855) (cid:1846)(cid:1845)(cid:1842)(cid:3397)(cid:1846)(cid:1844)(cid:1839)(cid:3398)(cid:1835)(cid:1830) (cid:4666)(cid:1870)(cid:1837)(cid:3397)(cid:1861)(cid:1868)(cid:1855) (cid:1846)(cid:1845)(cid:1842)(cid:3397)(cid:1846)(cid:1844)(cid:1839)(cid:4667)(cid:3398)(cid:1835)(cid:1830)(cid:4666)(cid:1875)(cid:1838)(cid:3398)(cid:1829)(cid:1841) (cid:1875)(cid:1838)(cid:4667) (cid:3398)(cid:1829)(cid:1841) (cid:1875)(cid:1838) (cid:4666)8(cid:4667) Or, in other terms: (cid:1851)(cid:1830)(cid:1835)(cid:1845)(cid:1842) (cid:3404) (cid:4666)1(cid:3398)(cid:1835)(cid:1830)(cid:4667)(cid:4666)(cid:1870)(cid:1837)(cid:3397)(cid:1861)(cid:1868)(cid:1855) (cid:1846)(cid:1845)(cid:1842)(cid:3397)(cid:1846)(cid:1844)(cid:1839)(cid:4667)(cid:3398)(cid:4666)1(cid:3398)(cid:1835)(cid:1830)(cid:3397)(cid:1835)(cid:1830) (cid:1829)(cid:1841)(cid:3398)(cid:1829)(cid:1841)(cid:4667)(cid:1875) (cid:1838) (cid:4666)9(cid:4667) Where (cid:1875) y (cid:1870) are the prices of labor and capital factor, respectively, and ipc will be the consumer price index. So, every consumer will maximize the utility from (cid:1829) and (cid:1845) , subject to (cid:3037)(cid:3035) (cid:3035) the budget constraint of its available income. 3.1.3 Public Sector The government collect taxes from the rest of economic agents to finance its activity, affecting, in this way the disposable income. In the other hand, make transfers to the private sector to redistribute incomes and demand goods and services for the rest of the economy. The difference between expenses and revenues will determine the public déficit or surplus (an endogeneus variable in the model). The fiscal revenues from production come from: (cid:3041) (cid:3041) (cid:1844)(cid:1835)(cid:1842) (cid:3404) (cid:3533)(cid:2028) (cid:3437)(cid:3533)(cid:1853) (cid:1868) (cid:1850)(cid:1856) (cid:3397)(cid:4672)(cid:3435)1(cid:3397)(cid:1829)(cid:1842)(cid:3439)(cid:1875) (cid:1864) (cid:3397)(cid:1870) (cid:1863) (cid:4673)(cid:1848)(cid:1827) (cid:3441) (cid:4666)10(cid:4667) (cid:3037) (cid:3036)(cid:3037) (cid:3036) (cid:3037) (cid:3037) (cid:3037) (cid:3037) (cid:3037) (cid:3037)(cid:2880)(cid:2869) (cid:3036)(cid:2880)(cid:2869) Where (cid:1844)(cid:1835)(cid:1842) is the indirect collect taxes and (cid:2028) the tax rate over production of (cid:1862) sector, (cid:1829)(cid:1842) the (cid:3037) (cid:3037) employers’ contribution and (cid:1853) the technical coefficients of intermediate domestic goods. (cid:3036)(cid:3037) The government will collect from employees’ contribution ((cid:1829)(cid:1841)) too: (cid:3041) (cid:1844)(cid:1842) (cid:3404) (cid:3533)(cid:1829)(cid:1842) (cid:1875) (cid:1864) (cid:1848)(cid:1827) (cid:4666)11(cid:4667) (cid:3037) (cid:3037) (cid:3037) (cid:3037)(cid:2880)(cid:2869) (cid:1844)(cid:1841) (cid:3404) (cid:1829)(cid:1841) (cid:1875) (cid:1838) (cid:4666)12(cid:4667) The imports are subject to a tariff (cid:2032)(cid:1862). The total revenues for this concept will be (cid:1844)(cid:1846): (cid:3041) (cid:1844)(cid:1846) (cid:3404) (cid:3533)(cid:2032) (cid:1868)(cid:1870)(cid:1865) (cid:1853) (cid:1843) (cid:4666)13(cid:4667) (cid:3037) (cid:3040)(cid:3037) (cid:3037) (cid:3037)(cid:2880)(cid:2869) Where (cid:1853) will be the technical coefficients from imports and y (cid:1868)(cid:1870)(cid:1865) a weighted index price (cid:3040)(cid:3037) for foreign products. The indirect taxes will be determined for: (cid:3041) (cid:3041) (cid:1844)(cid:1835)(cid:1848)(cid:1827) (cid:3404) (cid:3533)(cid:3533)(cid:1835)(cid:1848)(cid:1827) (cid:3435)1(cid:3397)(cid:2028) (cid:3439)(cid:3437)(cid:3533)(cid:1853) (cid:1868) (cid:1850)(cid:1856) (cid:3397)(cid:4672)(cid:3435)1(cid:3397)(cid:1829)(cid:1842)(cid:3439)(cid:1875) (cid:1864) (cid:3397)(cid:1870) (cid:1863) (cid:4673) (cid:1848)(cid:1827) (cid:3441) (cid:3037) (cid:3037) (cid:3036)(cid:3037) (cid:3036) (cid:3037) (cid:3037) (cid:3037) (cid:3037) (cid:3037) (cid:3037)(cid:2880)(cid:2869) (cid:3036)(cid:2880)(cid:2869) (cid:3041) (cid:3397)(cid:3533)(cid:1835)(cid:1848)(cid:1827)(cid:3435)1(cid:3397)(cid:2028) (cid:3439) (cid:1868)(cid:1870)(cid:1865) (cid:1853) (cid:1843) (cid:4666)14(cid:4667) (cid:3037) (cid:3040)(cid:3037) (cid:3037) (cid:3037)(cid:2880)(cid:2869) Where (cid:1835)(cid:1848)(cid:1827) is the indirect tax for the good (cid:1862), that levy both domestic and external production. (cid:3037) The collect of direct taxes comes from: (cid:1844)(cid:1830) (cid:3404) (cid:1835)(cid:1830)(cid:4666)(cid:1875) (cid:1838)(cid:3397)(cid:1870) (cid:1837)(cid:3397)(cid:1861)(cid:1868)(cid:1855) (cid:1846)(cid:1845)(cid:3397)(cid:1846)(cid:1844)(cid:1839)(cid:3398)(cid:1829)(cid:1841) (cid:1838) (cid:1875)(cid:4667) (cid:4666)15(cid:4667) Where (cid:1835)(cid:1830) is the income tax rate taking into consideration every kind of income: Labor ((cid:1838)(cid:4667), Capital ((cid:1837)), Transfers received from Public Sector (cid:4666)(cid:1846)(cid:1845)(cid:1842)) and Transfers received from the rest of the world ((cid:1846)(cid:1844)(cid:1839)) less employees’ contribution ((cid:1829)(cid:1841) (cid:1838) (cid:1875)). Finally, the total revenues R for the Government: (cid:1844) (cid:3404) (cid:1844)(cid:1835)(cid:1842)(cid:3397)(cid:1844)(cid:1841)(cid:3397)(cid:1844)(cid:1842)(cid:3397)(cid:1844)(cid:1846)(cid:3397)(cid:1844)(cid:1835)(cid:1848)(cid:1827)(cid:3397)(cid:1844)(cid:1830) (cid:4666)16(cid:4667) In this model the public expenses will be a constant and the public déficit will be determined endogeneusly, its function will be: (cid:3041) (cid:1830)(cid:1842) (cid:3404) (cid:1844)(cid:3398)(cid:1846)(cid:1845)(cid:1842) (cid:1861)(cid:1868)(cid:1855)(cid:3398)(cid:3533)(cid:1830)(cid:1833) (cid:1842) (cid:4666)17(cid:4667) (cid:3037) (cid:3037) (cid:3037)(cid:2880)(cid:2869) 3.1.4 Foreign Sector The assumption is that the Andalusian economy is a small economy and so, the level of foreign demand will be exogeneus. The total exports will not be influenced by domestic variables. The imports will follow the Armington hypothesis (1969) and will be considered as imperfect substitutes of domestic production. So the imports will be endogeneus and the foreign sector could have a déficit endogeneus determined: (cid:3041) (cid:3041) (cid:1830)(cid:1842)(cid:1844)(cid:1839) (cid:3404) (cid:1868)(cid:1870)(cid:1865)(cid:3533)(cid:1835)(cid:1839)(cid:1842) (cid:3398)(cid:1846)(cid:1844)(cid:1839)(cid:3398)(cid:1868)(cid:1870)(cid:1865)(cid:3533)(cid:1831)(cid:1850)(cid:1842) (cid:1862) (cid:3404) 1,2,…25 (cid:4666)18(cid:4667) (cid:3037) (cid:3037) (cid:3037)(cid:2880)(cid:2869) (cid:3037)(cid:2880)(cid:2869) Where (cid:1835)(cid:1839)(cid:1842) represents the imports of (cid:1862) sector, (cid:1831)(cid:1850)(cid:1842) the exports of (cid:1862) sector, (cid:1846)(cid:1844)(cid:1839) the foreign (cid:3037) (cid:3037) transfers and (cid:1868)(cid:1870)(cid:1865) the weighted price index of foreign products. The déficit / surplus of foreign sector will be (cid:1830)(cid:1842)(cid:1844)(cid:1839). 3.1.5 Saving and Investment The Investment is exogeneus determined (cid:3435)(cid:1835)(cid:1840)(cid:1848)(cid:3439), and the saving is defined from the utility (cid:3037) fucntion of the representative consumer, for that is a so‐called saving driven model. Public Deficit (cid:4666)(cid:1830)(cid:1842)(cid:4667) and Foreign Deficit (cid:4666)(cid:1830)(cid:1842)(cid:1844)(cid:1839)(cid:4667): (cid:3041) (cid:3533)(cid:1835)(cid:1840)(cid:1848) (cid:1868)(cid:1861)(cid:1866)(cid:1874) (cid:3404)(cid:1845) (cid:1868)(cid:1861)(cid:1866)(cid:1874)(cid:3397)(cid:1830)(cid:1842)(cid:3397)(cid:1830)(cid:1842)(cid:1844)(cid:1839) (cid:1862) (cid:3404) 1,2,…25 (cid:4666)19(cid:4667) (cid:3037) (cid:3037)(cid:2880)(cid:2869) Where (cid:1868)(cid:1861)(cid:1866)(cid:1874) is a price index form investment goods. 3.1.6 Prices and model calibration The prices will be endogenus determined through the following equation: (cid:1842)(cid:4666)(cid:1862)(cid:4667) (cid:3404) (cid:3435)1(cid:3397)(cid:1835)(cid:1835)(cid:3439)(cid:3435)∑(cid:3041) (cid:1853) (cid:1869) (cid:3435)1(cid:3397)(cid:1871) (cid:3439)(cid:1875)(cid:1838) (cid:3397)(cid:1870)(cid:1837) (cid:3397)(cid:3435)1(cid:3397)(cid:1872) (cid:3439) (cid:1868)(cid:1870)(cid:1865) (cid:1839) (cid:3439) (cid:4666)20(cid:4667) (cid:3037) (cid:3037)(cid:2880)(cid:2869) (cid:3036)(cid:3037) (cid:3037) (cid:3037) (cid:3037) (cid:3037) (cid:3037) (cid:3037) (cid:1835)(cid:1835) represents the indirect taxes in production, (cid:1871) the employer’s contribution of (cid:1862) sector, (cid:1872) the (cid:3037) (cid:3037) (cid:3037) ad valorem imports tariff, (cid:1868)(cid:1870)(cid:1865) and (cid:1842)(cid:4666)(cid:1862)(cid:4667) the imports price products and the unit cost of production, respectively. Obtaining the final price as: (cid:1869) (cid:3404) (cid:1868) (cid:4666)1(cid:3397)(cid:1835)(cid:1848)(cid:1827) (cid:4667) (cid:4666)21(cid:4667) (cid:3037) (cid:3037) (cid:3037) The value of technical coefficients, the tax rate and the coefficients of utility function has been calibrated for replicate the values of the different SAMs like benchmark equilibrium for the economy. For the calibration the required calculations are: (cid:1865) (cid:3036)(cid:3037) (cid:1853) (cid:3404) (cid:4666)22(cid:4667) (cid:3036)(cid:3037) (cid:1850) (cid:3037) Where (cid:1853) is the value of the technical coefficient calculated through the (cid:1865) element of the (cid:3036)(cid:3037) (cid:3036)(cid:3037) SAM, and (cid:1850) the total output of (cid:1862) sector. For the rest of tecnical coefficients (labor, capital and (cid:3037) foreign sector), the calculus will be similar: (cid:1865) (cid:3039)(cid:3037) (cid:1838) (cid:3404) (cid:4666)23(cid:4667) (cid:3037) (cid:1850) (cid:3037) (cid:1865) (cid:3038)(cid:3037) (cid:1837) (cid:3404) (cid:4666)24(cid:4667) (cid:3037) (cid:1850) (cid:3037) (cid:1865) (cid:3040)(cid:3037) (cid:1839) (cid:3404) (cid:4666)25(cid:4667) (cid:3037) (cid:1850) (cid:3037) Representing (cid:1865) , (cid:1865) y (cid:1865) the components of labor, capital and foreign vector, (cid:3039)(cid:3037) (cid:3038)(cid:3037) (cid:3040)(cid:3037) respectively, for the construction of vectors (cid:1838) , (cid:1837), (cid:1839). (cid:3037) (cid:3037) (cid:3037) Finally, the indirect tax rate for the (cid:1862) sector is calculated as: (cid:1846) (cid:3037) (cid:1846)(cid:1853)(cid:1876) (cid:3404) (cid:4666)26(cid:4667) (cid:3037) (cid:1828)(cid:1835) (cid:3037) Being (cid:1846) the sum of indirect taxes, employer’s contribution, Value Added Tax, production taxes (cid:3037) and tariffs. Besides, (cid:1828)(cid:1835) will be the taxable income of every sector. (cid:3037) The price considered as numeirare is the salary, recomputing, internally, changes and relative prices for the rest of goods, services and factors in the adjust to the equilibrium. 3.1.7 Solving the model So, the economic structure shaped in a non‐linear equations system reproduces the behaviour of every economic agent. Inside the framework of the comparative static full use of production factors is considered. The activity levels of government and foreign sector will be fixed, allowing the performance of prices and levels of activity of productive sectors. Equilibrium is achieved when consumers maximize their utility, productive sectors maximize their net benefits. The public sector will redistribute resources among the economic agents, matching their income with payments to sectors. In this balance, the amounts offered will be equal to the demanded ones in all markets. The proposed model is susceptible to evaluate changes in the structure of the system in the productive sectors and total output of the economy, and is capable to provide the detection of key sectors and their interconections in an economic system. The extraction of every productive sector (cid:1827) will be held in the system with the subsequent (cid:4666)(cid:2879)(cid:3037)(cid:4667) recomputation of a new equilibrium afther that shock. Sequential extractions will allow to obtain different results for every extraction in terms of Sectoral Output, Total Output and Gross Domestic Product in a conterfactual view. So, it will be possible to compare with the early structure before extraction, observing the implications of each sector. So, it is necessary a technological change in production given the matrix A of equation (1) respect counterfactual matrix (cid:1827) in equation (2), respecting, in any case the rest of the structure equation model (cid:4666)(cid:2879)(cid:3037)(cid:4667) that represents the economy. 4. DATABASE The data used in the calibration process will come provided by the SAMs developed for the Andalusian economy from 1990 to 2005, specifically for 1990 it will be uses the one elaborated by Cardenete (1998), for the year 1995 will use the one built by Cardenete and Moniche (2001). For year 2000 we will work with the one given by Cardenete et al. (2010) and the SAM made for Cardenete et al. (2010) for the year 2005. These Social Accounting Matrices will be the baseline scenario for model calibration and they have a structure of 25 productive sectors and 12 endogenous accounts as shown in Table 1. Changes in the values of matrix components allow to analyze the effects of political or shock applied in the model, which in this case will be changes resulting from the hypothetical extraction of one domestic sector of the production structure. These instruments (SAMs) consistently meet the conditions of the Walrasian general equilibrium in which the sum of rows is equal to the sum of columns. Table 1 – Structure of Social Accounting Matrices for Andalusia (1990-2005) 1 Agriculture 20 Construction 2 Livestock and forestry 21 Trade 3 Fishing 22 Transport and communications 4 Extractives 23 Other services 5 Refining 24 Sale services 6 Electricity 25 Non sale services 7 Gas 26 Labor 8 Water 27 Capital 9 Food industry 28 Consumption 10 Textile and leather 29 Gross Capital Formation 11 Wood industry 30 Employers' contribution 12 Chemicals 31 Production net taxes 13 Mining and steel 32 Tariffs 14 Metal industry 33 Value Added Tax 15 Machinery 34 Income Tax 16 Vehicles 35 Employees' contribution 17 Construction materials 36 Public Sector 18 Other transport equipment 37 Foreign Sector 19 Other manufactured goods Source: Own elaboration from Cardenete (1998), Cardenete and Moniche (2001), Cardenete et al. (2010) and Cardenete et al. (2010) 5. RESULTS 5.1 Total Output Table 2 shows the results over the total output of the systematic extraction of each sector following the proposed CGE. It is possible to observe both the total output after the computation extraction and its variation in relative terms respect the baseline (Gross Regional Product). For example, the elimination of Trade (21) sector in 1990 would reduce a 20,37% out of the Total Output. Table 2: Change in Total Output after the extraction of each sector
Description: