ebook img

Spectral evolution and the onset of the X-ray GRB afterglow PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spectral evolution and the onset of the X-ray GRB afterglow

Spectral evolution and the onset of the X-ray GRB afterglow P.A. Evans, J.P. Osborne, R. Willingale and P.T. O’Brien X-rayandObservationalAstronomyGroup,Dept.ofPhysics&Astronomy,UniversityofLeicester,Leicester, 1 UK,LE17RH 1 0 Abstract. BasedonlightcurvesfromtheSwiftBurstAnalyser,weinvestigatewhethera‘dip’featurecommonlyseeninthe 2 early-timehardnessratiosofSwift-XRTdatacouldarisefromthejuxtapositionofthedecayingpromptemissionandrising n afterglow.Weareabletomodel thedipassuch afeature,assuming theafterglow risesaspredicted bySariandPiran[1]. a UsingthismodelwemeasuretheinitialbulkLorentzfactorofthefireball.Forasampleof23GRBswefindamedianvalue J ofG =225,assumingaconstant-densitycircumburstmedium;orG =93ifweassumeawind-likemedium. 0 0 1 Keywords: GammaRayBursts 3 PACS: 98.70.Rz,95.75.Wx ] E H INTRODUCTION . h The early Swift-XRT observations of GRBs have long been seen to exhibit spectral evolution ([2]; [3]). A feature p seen in a number of GRBs is a ‘dip’ in the hardness ratio (i.e. a softening followed by a hardening;see Fig. 1a) at - o theendofthesteepdecayphase.TheSwiftBurstAnalyserlightcurves([4]),whichareinunitsoftheintrinsic(i.e. r unabsorbed)flux and accountfor spectral evolution,suggestthat this may correspondto the ‘turn-on’on the X-ray t s afterglow(Fig.1b). a Theriseoftheafterglowwasconsideredby[1],whopredictedthatitriseast2 untilsometimet atwhichpointit [ p peaksandbeginstodecay.Thistimetpcorrespondstothedecelerationradius:theradiusatwhichtherestmassenergy 1 ofthematerialsweptupbythefireballequalstheenergyofthefireball.FromthisonecandeterminethebulkLorentz v factoratthedecelerationradiusofthefireball(e.g.[1];[5]). 3 2 1 9 G 3E [1+z]3 8 0 iso = (1) 5 2 32p nm c5h t3 . p p! 1 0 WhereEisoistheisotropicequivalentenergyoutputoftheGRB,nisthenumberdensityofthecircumburstmedium, 1 andh istheradiativeefficiencyofthefireball. 1 Thisassumesthatthedensityisconstant,i.e.theGRBisinanISM-likeenvironment.Ifweinsteadassumethatthe : environmentiswind-like(i.e.r (cid:181) r−2)wefind: v i X G 0 Eiso[1+z] 14 ar 2 =(cid:18)8p Ampc3h tp(cid:19) (2) whereAisthedensitynormalisation.FollowingMolinarietal.weassumeh =0.2,n=1cm−3 andA=3×1035 cm−1;notingthatdependenceontheseunknownsisweak. In this paper we will thereforeconsiderwhether the X-ray hardnessratio dip can be used to constrainthe rise of theX-rayafterglowandhencetheinitialbulkLorentzfactor,giventheSari&Piranmodel.Itshouldbenotedthatthe presenceofaplateauphaseinX-raydataisofteninterpretedasasignofcontinuedenergyinjectionintothefireball insomeformorother(e.g.[6]).Itislikelythatthiswillmodifythefireballdynamicssomewhat,howeversince the rate of energyinjection is muchlower than the rate of energyoutputin the promptGRB, we believewe can safely disregardthiseffect. Hardness ratio of GRB 060729 BAT−XRT data of GRB 060729 1000 0.01 s 100 eV c/ 110 10−3 k 0.1 −10 01.00−13 V) 10−4 1.5 11000−04 0 ke 10−5 1.5 keV c/s 010.010.11100 sity (Jy @ 1 1100−−76 0.3− 1100−−243 x den 10−8 1.5 Flu 10−9 o 10−10 ati 1 R 0.5 10−11 0 1 10 100 1000 104 105 106 107 100 1000 104 105 106 107 Time since BAT trigger (s) Time since BAT trigger (s) FIGURE1. The(1.5–10)/(0.3–1.5)keVhardnessratioofGRB060729(leftpanel),showingthe‘dip’featurearound100–200 s after the trigger. The reconstructed 10 keV flux density light curve from theBurst Analyser light curve (right panel) –which accountsforthisspectralevolution–showsafeatureatthissametime,suggestiveoftheoverlapofthedecayingpromptemission andrisingafterglow. MODELFITTING Toinvestigatewhetherthehardnessratiodipcanindeedbecausedbytheriseoftheafterglow,wefitthehard(1.5–10 keV)andsoft(0.3–10keV)XRTbanddatafromtheXRTlightcurverepository([7],[8])simultaneously.Wefittwo components:the first modelsthe decayingpromptemission which we parameterise with the pulse modeldescribed byWillingaleetal. (2005);thehardnessratioofthiscomponentdecreases(i.e.softens)asa power-law.Thesecond componentmodelistheafterglow,whichwetreatasspectrallyinvariant.Thiscomponentiszerountilsometimet at a whichtheafterglow‘starts’,thereafteritrisesast2untilt whereafteritbreakstoagenerict−a decay. p We do not fit the entire light curve, since we are only interested in the transition from the prompt to afterglow emission.Iftheafterglowlightcurveshowsevidenceforafurtherbreakafterthatreferredtoabove,thedataafterthis breakareexcludedfromthefit.Similarlyanybreaksorflareswhichoccurbeforethepromptemissionfollowsasingle power-lawareexcluded;iftheburstshowsnoneofthesefeaturestheentiredatasetisfitted.Examplefitsareshownin Fig.2. RESULTS We identified GRBs with knownredshift, a clear dip feature in the hardnessratio, no flares close to or overlapping thedip,andwhereSwiftobservedthroughoutthedipfeature.Thisgaveanlistof23GRBs.Histogramsoftheinitial LorentzfactorsdeterminedfromthesefitsaregiveninFig.3.ForanISM-likeenvironmentthemedianvalueis225, withmostvaluesbeingabove100,inagreementwithmeasurementsintheliterature(e.g.[5],[9],[10],[11]).Onthe otherhand,ifweassumeawind-likeenvironmentthemedianvalueoftheinitialLorentzfactorisonly93,andisbelow 50forseveralbursts;thisisclosetothelimitimposedbythecompactnessproblemandmaysuggestthattheseGRBs cannothaveoccurredinawind-likeenvironment.WenotethatallofourvaluesarewellbelowG =1000,whichhas 0 beenproposedasalowerlimitonthebulkLorentzfactorgiventheGeVemissiondetectedbyFermi-LAT(e.g.[12]). Howevernone of the GRBs in our sample are those which were also observedby the LAT. Also note that [13] and Haoscoëtetal.(theseproceedings)havearguedthatGeVphotonscanescapefromaFireballwithbulkLorentzfactors substantiallybelow1000. GRB 061110A GRB 060729 Dark Grey: Hard −− Light Grey: Soft 0 Dark Grey: Hard −− Light Grey: Soft 0 100 0 1 0 0 10 1 0 s)−1 1 s)−1 1 e ( e ( 1 Count rat 00.0.11 Count rat 0.010.1 10−3 10−3 0−4 10−44 14 3 3 R 2 R 2 H H 1 1 0 0 100 1000 104 105 1000 104 Time since trigger (s) Time since trigger (s) FIGURE2. Examplesfits.Thedot-dashedlinesshowtheindividualcomponents.Thetoppanelshowsthefitteddata,thebottom panel the hardness ratio. The latter is not fitted, but is calculated from the top panel, and is shown to illustrate how the model reproducesthedipfeature.Leftpanel:GRB061110A.Rightpanel:GRB060729 CONCLUSIONS WehaveshownthatadipfeatureseenintheX-rayhardnessratiosofGRBsattheendofthesteepdecayphasecanbe interpretedastheturn-onoftheX-rayafterglow,whichrisesinaccordancewiththepredictionsof[1].Bymodelling thisrisewehavedeterminedtheinitialbulkLorentzfactorfor23GRBs,findingamedianvalueof225assumingan ISM-likecircumburstmedium,or93forawind-likemedium. REFERENCES 1. R.Sari,andT.Piran,ApJ520,641–649(1999),arXiv:astro-ph/9901338. 2. R. L. C. Starling, P. M. Vreeswijk, S. L. Ellison, E. Rol, K. Wiersema, A. J. Levan, N. R. Tanvir, R. A. M. J. Wijers,C.Tadhunter, J.Rodriguez Zaurin, R.M.Gonzalez Delgado, andC.Kouveliotou, A&A442, L21–L24 (2005), arXiv:astro-ph/0508237. 3. N.R.Butler,andD.Kocevski,ApJ663,407–419(2007),arXiv:astro-ph/0612564. 4. P.A.Evans,R.Willingale,J.P.Osborne,P.T.O’Brien,K.L.Page,C.B.Markwardt,S.D.Barthelmy,A.P.Beardmore, D.N.Burrows,C.Pagani,R.L.C.Starling,N.Gehrels,andP.Romano,A&A519,A102+(2010),1004.3208. 5. E.Molinari,S.D.Vergani,D.Malesani,S.Covino,P.D’Avanzo,G.Chincarini,F.M.Zerbi,L.A.Antonelli,P.Conconi, V.Testa,G.Tosti,F.Vitali,F.D’Alessio,G.Malaspina,L.Nicastro,E.Palazzi,D.Guetta,S.Campana,P.Goldoni,N.Masetti, E.J.A.Meurs,A.Monfardini,L.Norci,E.Pian,S.Piranomonte,D.Rizzuto,M.Stefanon,L.Stella,G.Tagliaferri,P.A.Ward, G.Ihle,L.Gonzalez,A.Pizarro,P.Sinclaire,andJ.Valenzuela,A&A469,L13–L16(2007),arXiv:astro-ph/0612607. 6. B.Zhang,Y.Z.Fan,J.Dyks,S.Kobayashi,P.Mészáros,D.N.Burrows,J.A.Nousek,andN.Gehrels,ApJ642,354–370 (2006),arXiv:astro-ph/0508321. 7. P.A.Evans,A.P.Beardmore, K.L.Page,L.G.Tyler,J.P.Osborne, M.R.Goad, P.T.O’Brien,L.Vetere,J.Racusin, D.Morris,D.N.Burrows,M.Capalbi,M.Perri,N.Gehrels,andP.Romano,A&A469,379–385(2007),0704.0128. 8. P.A.Evans,A.P.Beardmore,K.L.Page,J.P.Osborne,P.T.O’Brien,R.Willingale,R.L.C.Starling,D.N.Burrows, O.Godet,L.Vetere,J.Racusin,M.R.Goad,K.Wiersema,L.Angelini,M.Capalbi,G.Chincarini,N.Gehrels,J.A.Kennea, R.Margutti,D.C.Morris,C.J.Mountford,C.Pagani,M.Perri,P.Romano,andN.Tanvir,MNRAS397,1177–1201(2009), 0812.3662. 9. R.Xue,Y.Fan,andD.Wei,A&A498,671–676(2009),0902.2613. 10. P.Kumar,E.McMahon,A.Panaitescu,R.Willingale,P.O’Brien,D.Burrows,J.Cummings,N.Gehrels,S.Holland,S.B. Pandey,D.vandenBerk,andS.Zane,MNRAS376,L57–L61(2007),arXiv:astro-ph/0702319. 11. A.Melandri,S.Kobayashi,C.G.Mundell,C.Guidorzi,A.deUgartePostigo,G.Pooley,M.Yoshida,D.Bersier,A.J.Castro- Tirado,M.Jelínek,A.Gomboc,J.Gorosabel,P.Kubánek,M.Bremer,J.M.Winters,I.A.Steele,I.deGregorio-Monsalvo, R.J.Smith,D.García-Appadoo,A.Sota,andA.Lundgren,ApJ723,1331–1342(2010),1009.4361. FIGURE3. ThedistributionoffireballinitialbulkLorentzfactorsdeterminedfromourfitting,foraconstant-density (left)or wind-like(right)circumburstmedium. 12. A. A. Abdo, M. Ackermann, M. Ajello, K. Asano, W. B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, M.G.Baring,D.Bastieri,K.Bechtol,R.Bellazzini,B.Berenji,P.N.Bhat,E.Bissaldi,R.D.Blandford,E.D.Bloom, E.Bonamente,A.W.Borgland,A.Bouvier,J.Bregeon,A.Brez,M.S.Briggs,M.Brigida,P.Bruel,J.M.Burgess,D.N. Burrows,S.Buson,G.A.Caliandro,R.A.Cameron,P.A.Caraveo,J.M.Casandjian,C.Cecchi,Ö.Çelik,A.Chekhtman, C.C.Cheung,J.Chiang,S.Ciprini,R.Claus,J.Cohen-Tanugi, L.R.Cominsky,V.Connaughton, J.Conrad, S.Cutini, V.d’Elia,C.D.Dermer,A.deAngelis,F.dePalma,S.W.Digel,B.L.Dingus,E.d.C.e.Silva,P.S.Drell,R.Dubois, D.Dumora,C.Farnier,C.Favuzzi,S.J.Fegan,J.Finke,G.Fishman,W.B.Focke,P.Fortin,M.Frailis,Y.Fukazawa,S.Funk, P.Fusco,F.Gargano,N.Gehrels,S.Germani,G.Giavitto,B.Giebels,N.Giglietto,F.Giordano,T.Glanzman,G.Godfrey, A. Goldstein, J. Granot, J. Greiner, I. A. Grenier, J. E. Grove, L. Guillemot, S. Guiriec, Y. Hanabata, A. K. Harding, M.Hayashida,E.Hays,D.Horan,R.E.Hughes,M.S.Jackson,G.Jóhannesson,A.S.Johnson,R.P.Johnson,W.N.Johnson, T.Kamae,H.Katagiri,J.Kataoka,N.Kawai,M.Kerr,R.M.Kippen,J.Knödlseder,D.Kocevski,N.Komin,C.Kouveliotou, M.Kuss,J.Lande,L.Latronico,M.Lemoine-Goumard,F.Longo,F.Loparco,B.Lott,M.N.Lovellette,P.Lubrano,G.M. Madejski,A.Makeev,M.N.Mazziotta,S.McBreen,J.E.McEnery,S.McGlynn,C.Meegan,P.Mészáros,C.Meurer,P.F. Michelson,W.Mitthumsiri,T.Mizuno,A.A.Moiseev,C.Monte,M.E.Monzani,E.Moretti,A.Morselli,I.V.Moskalenko, S.Murgia,T.Nakamori,P.L.Nolan,J.P.Norris,E.Nuss,M.Ohno,T.Ohsugi,N.Omodei,E.Orlando,J.F.Ormes,W.S. Paciesas,D.Paneque,J.H.Panetta,V.Pelassa,M.Pepe,M.Pesce-Rollins,V.Petrosian,F.Piron,T.A.Porter,R.Preece, S.Rainò,R.Rando,A.Rau,M.Razzano,S.Razzaque,A.Reimer,O.Reimer,T.Reposeur,S.Ritz,L.S.Rochester,A.Y. Rodriguez,P.W.A.Roming,M.Roth,F.Ryde,H.Sadrozinski,D.Sanchez,A.Sander,P.M.SazParkinson,J.D.Scargle, T.L.Schalk,C.Sgrò,E.J.Siskind,P.D.Smith,P.Spinelli,M.Stamatikos,F.W.Stecker,G.Stratta,M.S.Strickman,D.J. Suson,C.A.Swenson,H.Tajima,H.Takahashi,T.Tanaka,J.B.Thayer,J.G.Thayer,D.J.Thompson,L.Tibaldo,D.F. Torres,G.Tosti,A.Tramacere,Y.Uchiyama,T.Uehara,T.L.Usher,A.J.vanderHorst,V.Vasileiou,N.Vilchez,V.Vitale, A.vonKienlin,A.P.Waite,P.Wang,C.Wilson-Hodge,B.L.Winer,K.S.Wood,R.Yamazaki,T.Ylinen,andM.Ziegler, ApJ706,L138–L144(2009),0909.2470. 13. X.Zhao,Z.Li,andJ.Bai,ApJ726,89–+(2011),1005.5229.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.