ebook img

Spatial and temporal structure of the spider community in the clay semi-desert of western Kazakhstan PDF

2011·8.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spatial and temporal structure of the spider community in the clay semi-desert of western Kazakhstan

1 Arachnologische Mitteilungen 40:94-104 Nuremberg,January201 Spatial and temporal structure of the spider community in the clay semi-desert ofwestern Kazakhstan TatyanaV.Piterkina Abstract:The spatial and temporal structure ofspidercommunities was studied in the clay semi-desert ofthe north-western Caspian Lowland,western Kazakhstan (49°23' N,46°47' E).The soils and vegetation are complex, being composed ofa mosaicofdesertand steppe plantcommunities.Besidesthe nativeassociations,thereare plantationsofdifferenttreespecies.Theground-dwellingspiderassemblagesinthenativehabitatsarethemost diverse.The numberofspecies inhabiting forest plantations isthreetimes as small.Gnaphosidae isthe leading familyintheground layer.Theyshowhigh abundanceanddiversitylevelsduringthewholeseason.Thomisidae, Lycosidae,Philodromidae,and Salticidaeareabundantaswell.Thespeciesdiversityofherbage-dwelling spiders in different open native habitats is very similar.The spectrum of dominant families (Thomisidae, Oxyopidae, Araneidae,and Salticidae)andtheseasonaldynamicsoftheirratio in desertand steppeassociationshavemuch in common.Spiderassemblages ofnative and artificial habitats are characterised by changefrom multispecies polydominantspring-summercommunitiestoimpoverished imbalanced autumnones.Seasonalchangesinthe speciesstructureofmaturespidergroupingsinnativehabitatsarewellpronounced,whiletheimpactofseasonal conditions iseven strongerthan between-habitatdifferences.Complexesoftypical specieswith different levels ofhabitatpreferencearerevealed. Keywords:Araneae,ecology,habitatpreference,seasonal dynamics Spiders of steppe and semi-desert regions of the Caspian Lowland, a semi-desert zone (MlLKOV Sc Palaearctic, unlike those ofthe temperate zone, are Gvozdetsky 1986). still poorly studied. There is some faunistic infor- mation (e.g. Ponomarev 1981, 1988, 2005, 2008, Studyarea,materialandmethods Ponomarev &,Tsvetkova 2003, Ponomarev The Dzhanybek plain is the most arid area in the &TSVETKOV2004a,2004b,POLCHANINOVA 1992, Ciscaspiansemi-desertduetobothinternaldrainage 1995, 2002, KOVBLYUK 2006, EFIMIK et. al. 1997, and soil salinity, despite its northernmost location. ESYUNINScEFIMIK1998,ESYUNINetal.2007,TU- The climate ofthe territoryis characterised byhigh NEVAScESYUNIN2003),butverylittleattentionhas atmospheric drought and aridity. Hot summers and beenpaidtosuchecologicalaspectsasthestructureof severe winters are typical: the summer temperatures populations, their dynamics, and the mechanisms of exceed 40°C, the winter temperatures sink lower communityfunctioninaridandsemi-aridconditions than -35°C.The average annual airtemperature (for (ESYUNIN 2009). 1951-2003) is 7.3°C; 18°C during the warm period Thispaperis focusedon studyingthe spatial and and-3.5°Cduringthecoldperiod.Theaverageannual temporal structure ofspider assemblages in the clay precipitation (for 1951-2003) is 295 mm, ranging mm semi-desertin the Volga andUralrivers’interfluve. from 44 (in 1984) to 354 (in 1993) (SAPANOV The research was carried out in the environs ofthe 2006).Thesharpdisparityofheatandmoisturecauses DzhanybekResearch Station ofthe RussianAcade- theverylowhumidityoftheterritory.Theevaporative my of Sciences (49°23'N, 46°47'E), located on the power reaches 1000 mm, which is 3 times the total border between the Western Kazakhstan Province rainfall. In addition, the meteorological conditions of the Republic of Kazakhstan and the Volgograd ofthe region are characterisedbylong-termfluctua- Provinceofthe RussianFederation.Theareastudied tions with regular cyclic reiterations ofdrought and is aflat, nearlyundrainedplain in the north-western moist periods (RODE 1959, LlNDEMAN et al. 2005, SAPANOV2006). TatyanaV.PITERKINA,LaboratoryofSynecology,Instituteof Another characteristic feature ofthe study area EcologyandEvolution,RussianAcademyofSciences,Leninskii is a well pronounced complex pattern of soils and Prospect33,Moscow119071,Russia,[email protected] vegetation,withacombinationoftypicaldesert,semi- submitted:19.1.2010,accepted:25.4.2010;online:10.1.2011 desert and steppe habitats.The co-existence ofsuch W Spidercommunityinasemi-desertof -Kazakhstan 95 contrastingbiotopesiscausedbypronouncedmicro- and seasons,i.e. spring, summer and autumn.When reliefand, consequently, differences in moisture, soil calculatingthe ratio offamilies,I considered spiders & substrates and theirproperties (RODE POLSKIKH ofall instars. With respect to the seasonal changes 1961). in species compositions I used mature spiders only, Microelevationsareoccupiedbyplantcommuni- althoughIsuggestthatthedifferencesrevealedmight tiesofthedeserttype,withKochiaprostrata,Artemisia reflectcertain phenological trends. pauctflora and Salsola laricina on saline soils. The Taxa with a relative abundance of >5 % were , groundwater is saline. Forb-grass vegetation (Stipa considered predominat. The habitat preference of spp., Festuca valesiaca Agropyron cristatum etc.) on specieswascalculatedusingPesenko’scoefficient(if.) , , darkchestnut and meadowchestnut soilswith fresh (PESENKO 1982), which represents a mathematical groundwateroccupiesmicrodepressions(downto0.4 transformation ofthe share ofa species in a single m deep); theyrepresentsteppe habitats.This mosaic biotope to its share in all otherbiotopes: ofelements constitutes most ofthe territory. Large depressions (down to 1-1.5 m deep, area of 1-100 R.= (n../N - n./N)/(n../N.+ n./N), hectares) with steppe plant communities take up y ij j i y j 1 about 10-15 % ofthe area. These large depressions wheren.—numberofspecimensof/-speciesinsamp- are best suppliedwithwater, due to runofffrom the les fromy-biotopewithtotalvolumeA.; n.— number surrounding area. Besides these mentioned native ofspecimens of/-species in all other biotopes with associations, there are 50-year-old plantations com- totalvolumeN.Singlerecordsofspecieswereomitted posed ofdifferenttree species. from the calculation. Materialforthisworkwascollectedbytheauthor The choice ofthis coefficient was based on the (April-October2004-2005) andDr.K.G.Mikhailov varietyofthe collectingmethodsused,which caused (June-September 1984) in three native habitats (de- the heterogeneityofthe data obtained and the diffi- sertassociations ofmicroelevations,andsteppe asso- cultiesintheirunification.Usingrelativeindices(not ciations oflarge depressions, and microdepressions) absolute ones) simplifies the interpretation of data and three artificial ones: oak Quercus robur) forest and makes miscellaneous information comparable. ( belts, oak patch in a park, and elm (Ulmuspumila) Thevalueofthe coefficientrangesfrom-1 (absolute forestbelts.The collections in thelatterhabitattook avoidance) to +1 (absolute preference). place onlyin 1984.Inrecentyears,thevitalityofthe Statistical data analysis was performed using forest-belt has become very poor; the trees are very Statistica 6.0. sparse so the conditions in it have approached those ofan open habitat. Results Traditional collecting methods were used: pitfall About 20000 spider specimens were captured and trapping(onetransect—10traps),hand-sortingofsoil studied,with about 7000 ofthese spiders being ma- and litter samples (0.25 x 0.25 m, 10 samples) and ture. Altogether, 172 species from 88 genera and 21 sweeping(one sample-4x25 sweeps,3 times aday, familieswererecovered.Takingintoaccountthescant at 00:00, 8:00 and 16:00). Samplingwas carried out information published previously, the spider fauna every7-10 days. Pitfall trapswere setin microeleva- of the Dzhanybek Station amounts to 184 species tions, microdepressions andwoodyplantations. Soil from 93 genera and 22 families. A checklist and the and litter samples were taken in all studied habitats. distributionofspeciesbetweenthestudyhabitatshas As the plantations had a rather poor and scattered been made available elsewhere (PlTERKINA 2009, & herbaceous layer, sweeping was undertaken only in PlTERKINA MIKHAILOV2009). Sincethe timeof native habitats. these mentioned papers some taxonomical changes The material includes a total of 15000 pitfall havetakenplaceorsomeidentificationswererefined, days, 570 soil and litter samples, and 268 sweeping thus some species names may not coincide. Namely, samples. Ero sp. turned out to be Ermetus inopinabilis Pono- One ofthe mostimportantfeatures ofthe spider marev, 2008, Theridion cf. uhligi Martin, 1974 - T. population in the clay semi-desert is its strongly uhligi Thanatus constellatus Charitonov, 1946 - T. , pronounced seasonality and vertical stratification. oblongiuscuius(Lucas, 1846), andEresus cinnaberinus Thus, I analysed the structure of spider complexes (Olivier, 1789) -E. kollariRossi, 1846. separatelybylayer,i.e.groundandherbaceouslayers, 96 T.V.Piterkina Species structure ofspider communities and its 30-50%).Pisauridaeshowapeakintheirabundance seasonaldynamics in spring and autumn, whereas Liocranidae peak in The communities ofground-dwelling spiders in the summer. native habitats - microelevations and microdepres- Seasonalchangeinspeciesdominanceiswellpro- sions - are the most diverse (about 90 species).The nounced andthe species setis relativelystable across number of species inhabiting forest plantations is different years (Tab. 1). For example, in the desert three times as small (about30 species) (Tab. 1). habitats, T. veteranica Haplodrassus cf. soerenseni E. , , The activityofspiders in the open habitats fluc- eltonica D. rostrains, Z. orenburgensispredominate in , tuates from 20 to 70 ind./ 100 pitfall-days,with the springpopulations in bothyears ofstudy.The stable highest numbers in spring and summer. The amp- summerdominants areP.braccatus H. horridus Oxy- , , litude ofits fluctuation is much higher in the forest opesc£xinjiangensis D. rostratusandZ. orenburgensis. , plantations (from 3-4 to 100 ind./100 pitfall-days). Theautumnpopulationsareratherimbalanced.Cher- The density ofthe spider population, based on soil acteristicisahighlevelofpredominanceof1-2species andlittersamples,reachesitshighestvaluesinautumn thatcanchangeindifferentyears(Z. orenburgensis X. , (up to 117 ind. /m2). marmoratusorD. rostratus).Thedominantcomplexes Gnaphosidaeisthedominantfamilyinthenative ofoakplantationshavemuchincommonandinclude associations.Theyexhibithighabundanceanddiver- severalspeciesabundantduringthewholevegetation sitylevels (about 50 %) during the whole vegetation season (Z.gallicus, O.pratkola,X. luctator) (Tab. 1). season,this beingquite typicalofarid and semi-arid The species diversity of herbage-dwelling spiders landscapes.TheproportionsofLycosidaeandSaltici- in the open native habitats is very similar: about 50 daeareless,butalsostable.Linyphiidaepredominate species(Tab.2).Theabundanceofhortobioticspiders inspringandautumn,Oxyopidaeinsummer,Titanoe- fluctuates with a high amplitude, reaching its maxi- cidae in springand summer,Thomisidae in summer mum in summer (about 100 ind. / 100 sweeps).The andautumn.Thedominantcomplexofthetreeplan- spectrumofpredominatingfamiliesandtheseasonal tationsislessdiverse.TheproportionofGnaphosidae dynamics of their proportion in desert and steppe is significantly lower than in native habitats (about associations have much in common. Uloboridae and 20-30%),whiletheabundanceofThomisidaeishigh Linyphiidae are abundant in spring, Araneidae and andstable duringthe entirevegetationseason(about Oxyopidae in springand autumn, Salticidaein sum- A B 1-Pearsonr 1-Pearsonr CompleteLinkage CompleteLinkage Figure1:Clusteringthematurespidercomplexesforseparateseasons:A-ground-dwellingspiders,B-herbage-dwellingspi- ders.Habitats:1:microelevations,2:microdepressions,3:largedepressions,4:elmshelter-belt,5:oakshelter-belt,6:oakpatch ina park.Seasons:spr-spring,sum-summer,aut-autumn. W Spidercommunityinasemi-desertof -Kazakhstan 97 mer and autumn. Philodromidae, Clu- bionidae and Miturgidae are numerous duringthewholevegetative period. The seasonal change of the pre- dominant complexes of species is also well-pronounced(Tab.2).Inspringand, ?S ^ a especially,summer,the sets ofabundant species are not stable in differentyears. § 00 Onthecontrary,theautumnpopulations .«Ha ofall habitats are verysimilar.Theyare o .-Sr 3 .*3 mainly formed by two species, Xysticus marmoratusandX. striatipes. Co-domi- .V§j “Ca) g nanceofCheiracanthiumcf.virescensadds ^ £ originalitytotheautumnassemblagesof microelevations,E. michailovitothoseof gao-c£c microdepressions, andH. lineiventristo -ra those oflarge depressions (Tab.2). go' I Clustering the mature spider com- N QJR ON plexes for separate seasons (Fig. 1) yielded interesting results. Two large O clusters were revealed among ground- <3 ^ On dwelling spiders: assemblages ofnative ^|o biotopes and offorest plantations (Fig. 1 1 -id R 1A).Withinthem,thepopulationswere «S § not united by habitat, as one would eR? 3^; N Q 73. > ÜanSqNÜa"Üa"<r ^oq expect, but by season. The cluster of open habitats includes populations of microelevations and microdepressions — during spring, summer and autumn. \C0N g'.gSq.' Microclimatic conditions in woody •‘'SI |a -?S> 5 3 J3 " plantations were presumably compara- tively smoother, even though no direct .73 paR ^^ N-S abiotic measurements were taken. The cluster ofartificial forests appears to be CO b R less differentiated. The same tendency "cO is also obvious when clustering the D0 <hy4 &a0 herbage-dwelling spider complexes: 01 3 R tshurmeemperronaonudncaeudtculumsnterassusneimtbeldagspersinog,f cu ISj Ns cjrqu pSRSi- «aRgs”’^8S “-'§ic5Tr-«SS£Sä ^IO§sr microelevations, microdepressions and nOh c large depressions respectively(Fig. IB). 'S S 3 Habitatpreferencesofspecies 1 ti 1 Spider assemblages of desert associa- & I g tions are the most specific.The share of I3% X^g -Sa -atS^3S3 1aRS*-85SS --59R 1-o<g5r|Oa3Rr-Sa§ges speciescollectedonlyinmicroelevations Si cq N ^ Ü ^ is highest (24 %),whereas it is halfthis OJ in the other biotopes. Most of unique 'u cu Q. species, with few exceptions, exhibit 1/1 low abundance levels and hardly play o 'OÖ ’cuj <U <U OJ <U coenotic roles (Tab. 3). CJ ^ 1 98 T.V.Piterkina (44) (22)(22)(11) 2005 co praticolalongipesluctator gallicus =Q5 &<-> tRs'1X?s fcv0 OzyptilaZelotes XysticusZelotes N§ ^^^g°f0? 1 Autumn (43)(24) R vO «3 R 2004 Ov praticolataeniopus II S « JH'* v s s 5 OzyptilaAlopecosa ^ ^ Of?-£ N 03 Qq R (42)(9) (7)(7)(7)(5)(5) ^d--1 RSR (8) R Summer 2004 39 schineri mirabilis gallicuspraticolaninnii lineatus luctator R pardalis -3 £ Titanoeca Pisaura Zora Zelotes OzyptilaXysticusOxyopesXysticus ’ÖN»S ^JRS Q c? rao Ore (18)(10) (8) (39) (8) 2005 0T—0 luctator mirabilis praticola(pa9rda)lispusillusgallicus ^RS$ j^rRs V'gSuS-5sR5 XysticusPisaura OzyptilaZora DrassyllusZelotes i <3 iS bCJD Spring GO 00 (31)(14) (11)(6)(6) ^ ^^ Xrs 2004 14 mirabilis pusillus(ga1ll3ic)uspraticolataurica luctator (6) 'o§ I IR3 •«V, pardalis ^ *X)g. Pisaura DrassyllusZelotes OzyptilaGnaphosaXysticusZora .V"3§O•^N§*^>Nss0 -^sRS Q>R ÜRR CC/D5 "a '<cÜ/U5 <PC/D5h CC/JD <Duh baC <C/UD CMOm g-ÖcMcj 4cC-tJ*f J<ZD 0 M0cä Z36 T<du 1 ^ : 1 W Spidercommunityinosemi-desertof -Kazakhstan 99 o' "ts XI VoO .X r o NO .g g <N £ ^ !!•„ X 0?.jo c XCnoN S b§S <3B o<o"RtN" 00 'al^t£!s •-£! S .1 ^ ! * 1 III ^<3 XÖ X>? vO ^ i2, 5 .-Sh- %. a O•0^n0r <N t.<xs-ix2 in T 1 ^ B ,^Vj .<xo abundance :34) (9) < S 00 3 •S g ^aNXO'oN'~a'n3-h' relative habitats) 2004 20 ~RS°^a .R« -£§ht§? bsrhacokwetss (desert •§sCX?,..5§«- |IS X8§ E-iH of. Öaao vCoO hCh^^1TNOf<VroX<xOSr(§qNCjO^Xf?Xhx.nT<s^X"s> *o in ^I'ULO cn> XX_ |8o-§b -§9 Ip sNpumibdeerrss. Microelevations ^X.»ar3ct-r'X'Qsrask», -^^<ar3) --?Sa«hoü ÜXU^aae? OX-'^<a«r?hSos OT—N 00 uEleaaS1gp,eiraXX'ln\arctoteynac‘c§RyfSop.^es-l-ioSSpShäanus-o-la*Rn§b2at»uso'l-eirta§a3caJnth ) CN ^ Q Ö ^?. X Ü X Q Ö R c? S & X‘I§xxoo herbage-dwelling s £ K ja ~R S 3 VooO H cS+Sh ~^&§ .SS3e --<öS5 mature E3 m ^ hß 5^1£1|5§*§=>0S5I«£ &£a OC“'§R§R l1glislItilR“ fVbHhJj Cx) .i0'hgaRx^SN X*-r>^''taRXSS-* .'0'Xa?RXS?s ^r§vpgCaTJN X of CODh COOh XCO x3 R^ Xg s ^ a X'O ^ TS £ a oposptruulfcattuiroens '^*S§I *^Ia1 .1X|?b |sal!i^-^|§Qs Ö"5a "kS) hAX£ Ü<aS! Üas o<oN ON GCXSiaas3bbSirnb U~^lob5aSoKritus NC.«hejU3irRahcan CAgs&yn^e•'tacsXTri~cc-h-o\pte:ArchRaQ§Raeodi m CJ bJO .a Species *VC/hD <HO-H cCtf <D T2ab:le -DOa '<<uUu uoC<5J3 £Da<0Ou ‘.OCCCJo//Dh33h fPT<aoXH3D ’CCD-<0/DL3, B 100 TV.Piterkino Table3:Uniquespeciespertypeofhabitat. Most ofthe typical species in desert associations are number % dwellers ofarid and semi-arid landscapes: these are Microelevations 28 23.7 steppe(D.rostratus Z.orenburgensis G.steppica,etc.), , , Microdepressions 10 8.9 semi-desert (S. crassipedis T. mikhailovi W. stepposa) , , Largedepressions 7 13.4 and steppe-desert species (H. horridus O. lugubris)-, , Elmshelter-belt 3 10.3 with some participation ofnemoral-steppe and ne- Oakshelter-belts 6 15.4 moral ones. The share ofsteppe species ( . cinerea, Oakpatchinapark 4 12.9 G. leporina, H. isaevi, etc.) decreases significantly in associations ofmicrodepressions and large depressi- As manyas25 speciesoccurinallnativehabitats, ons, while nemoral-steppe (E. michailovi, Z. electus, another five in all forest plantations. Two species, T.arenarius etc.)andnemoral-subtropicalspecies(P. , LathysstigmatisataandXysticusninnii areubiquitous chrysops P.fasciata,A.lobata etc.)prevail.Mostofthe , , , and inhabit all studied habitats. typical species are quite abundant and predominate However,findingthespeciesinaparticularhabitat in these biotopes. does not necessarily indicate habitat preference. In In addition, there is a complex ofspecies which order to estimate preference level, Pesenko’s coeffi- caninhabitseveraltypesofnativehabitatswithsimi- A cient (F.) was used. complex ofspecies, including lar probabilitylevels (except forwoodyplantations). taxa both with high (F.>0.7) and relatively low These are Trichoncoides cf.piscator, G. bituberculata, (0.3>/y>0.7)levelsofhabitatpreference,wasrevealed A. v-insignitus,A. cursor P.histrio, Z. segrex, etc. , for eacii habitat (Tab. 4). Complexesoftypicalspeciesofwoodyplantations arepoorandinclude 12-15 species,althoughthelevel Discussion ofhabitat preference is very high (Tab. 4). Most of It is well known that the denser the vegetation the them are nemoral species. Populations in the plan- greater is density of spiders, and the greater the tations are verylikely composed ofhighlyeurytopic diversity ofvegetation the greater the spider species species D.pusillus Z.gallicus Pmirabilis andtypical ( , , ) diversity(DUFFEY1962).Butthespiderassemblages dwellers ofintrazonal associations S zimmermanni ( . , ofboththegroundandherbaceouslayersofopenna- T.schineri)withasmallparticipationofforestspecies tive habitats (microelevations, microdepressions and (O.praticola) which could be introduced with plant large depressions) areverysimilarnotonlyinspecies material. diversitybut also in density.Thiswas rather surpris- On the other hand, the structure of spider as- ing as the low, sparse and rather poor desert plant semblages is heavily determined by macroclimatic communities look much more miserable compared conditions and their seasonal changes. The analysis to the denseforb-grassvegetationofsteppe habitats. of seasonal features of population structure shows This reveals acomplexofspecieswelladapted to the that the spring and summer spider assemblages of extreme conditions of desert associations. On the both ground and herbaceous layers are characterised contrary, the communities offorest plantations ap- by high species diversity levels and a relatively high pear to be significantly impoverished.The poorness number ofpredominating species, as opposed to the ofsoilfaunaunderDzhanybekplantationswasdem- impoverished,imbalancedautumnpopulations (Tab. onstrated for other arthropods as well (CHERNOVA 1-2). The same pattern was recovered by ESYUNIN 1971, KRIVOLUTSKII 1971, etc.). (2009) for spiders ofsteppe and steppe-like habitats Calculating the level of habitat preference (if in the UralMountains. .) revealedcomplexesoftypicalspeciesforeachhabitat Clustering the spider complexes for separate (Tab. 4). In spite ofmosaic structure and acompara- seasons confirmed the prevailing role of seasonal tivelysmallsize ofdesertand steppe elements (some differences in species proportions for mature spider tens ofsquare meters) in complexNorthern Caspian groupings of native habitats when comparing be- semi-desert, the spider groupings formed on them tween-habitat differences (Fig. 1). The populations are rather specific and contain sets ofspecies asso- of native associations were not united by habitats, A ciated with the particularities ofthe substrate (soil) but by seasononality. similar trend has been also and vegetation ofthose elements.The complexes of shownbyESYUNIN(2009)forthespiderpopulations typicalspeciesofnativehabitats-microelevationsand ofsteppe-like habitats in the UralMountains. microdepressions - are the richest (35-40 species). Itis interestingto note that such a tendencywas W Spidercommunityinosemi-desertof -Kazakhstan 101 Table4:Pesenko'scoefficientofa habitatpreference{Fij)ofspiders.Speciesaregroupedaccordingtotheirpreferencetoa certain habitat.WithinthegroupsspeciesarerankedinorderofdecreasingthevaluesofFij.Greybackground:highlevel ofhabitatpreference(0.7<F..< 1.00);bold:relativelylowlevelofhabitatpreference(0.3 <F..<0.7).HabitatsasinFig.1. Species Numberof Habitats specimens 1 2 3 4 5 6 Chalcoscirtusnigritus 17 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 Heriaeushorridus 54 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 Lepthyphantesspasskyi 7 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 Micariaguttulata 7 1.00 -1.00 -1.00 -1.00 -1.00 Nomisiaaussereri 4 1.00 -1.00 -1.00 -1.00 -1.00 Robertusarundineti 5 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 Urozelotessp. 4 1.00 -1.00 -1.00 -1.00 -1.00 Evippaeltonica 189 0.98 -0.94 -1.00 -1.00 -1.00 Titanoecaveteranica 115 0.96 -0.90 -1.00 -1.00 -1.00 Aelotesorenburgensis 204 0.93 -0.82 -1.00 -0.94 -1.00 Drassodesrostratus 153 0.91 -0.78 -1.00 -1.00 -0.92 -1.00 Lasaeolatristis 23 0.91 -0.75 -0.85 Phaeocedusbraccatus 47 0.91 -0.77 -1.00 -1.00 -1.00 Micariapallipes 56 0.89 -0.71 -1.00 -1.00 -1.00 -1.00 Oxyopescf.xinjiangensis 114 0.82 -0.92 -0.36 -1.00 -1.00 -1.00 Thanatusmikhailovi 22 0.80 -0.51 -1.00 -1.00 -1.00 -1.00 Microlinyphiapusilla 16 0.71 -0.26 -0.76 -1.00 -1.00 -1.00 Silometopuscrassipedis 23 0.71 -0.35 -0.59 -1.00 -1.00 -1.00 Talanitesmikhailovi 10 0.71 -0.35 -1.00 -1.00 -1.00 Trachyzelotesadriaticus 5 0.71 -0.35 -1.00 -1.00 -1.00 Talanitesstrandi 14 0.69 -0.31 -1.00 -1.00 -1.00 Xysticusmarmoratus 278 0.66 -0.44 -0.41 -1.00 -1.00 -1.00 Gnaphosalucifuga 79 0.65 -0.23 -1.00 -1.00 -1.00 -1.00 Theridionuhligi 6 0.64 -0.21 -1.00 -1.00 -1.00 Ozyptilalugubris 19 0.62 -0.18 -1.00 -1.00 -1.00 Theridioninnocuum 8 0.62 -0.26 -0.54 -1.00 -1.00 -1.00 Drassyllussur 33 0.60 -0.16 -1.00 -1.00 -1.00 Nursciaalbomaculata 36 0.59 -0.15 -1.00 -1.00 -1.00 Ozyptilapullata 22 0.58 -0.13 -1.00 -1.00 -1.00 -1.00 Pellenesalbopilosus 26 0.57 -0.11 -0.63 -1.00 -1.00 -1.00 Archaeodictynaconsecuta 18 0.53 -0.41 -0.18 Ceratinellabrevis 3 0.50 -0.02 -1.00 -1.00 -1.00 Euophrysfrontalis 3 0.50 -0.02 -1.00 -1.00 -1.00 Gnaphosasteppica 72 0.50 -0.08 -1.00 -0.83 -0.77 Walckenaeriastepposa 3 0.50 -0.02 -1.00 -1.00 -1.00 Haplodrassuscf.soerenseni 102 0.42 0.05 -1.00 -0.88 -0.83 Aelurillusm-nigrum 5 0.39 0.13 -1.00 -1.00 -1.00 Cheiracanthiumcf. virescens 99 0.36 -0.15 -0.20 -1.00 -1.00 -1.00 Phlegrabicognata 24 0.36 0.16 -1.00 -1.00 -1.00 Uloboruswalckenaerius 26 0.35 -0.22 -0.12 -1.00 -1.00 -1.00 Aelotescaucasius 39 0.32 0.10 -0.08 -0.71 -1.00 Improphantescontus 7 -1.00 1.00 -1.00 -1.00 -1.00 Heliophanusflavipes 4 -1.00 1.00 -1.00 Phlegrafasciata 10 -1.00 1.00 -0.05 -1.00 -1.00 -1.00 Walckenaeriaalticeps 4 -1.00 1.00 -1.00 -1.00 -1.00 -1.00 Haplodrassuskulczynskii 48 -0.94 0.98 -1.00 -1.00 -1.00 Trichopternacito 169 -0.98 0.96 -0.43 -0.19 -0.91 -1.00 Berlandinacinerea 139 -0.83 0.92 -1.00 -1.00 -0.76 Cercidialevii 37 -1.00 0.92 -0.80 -1.00 -1.00 -1.00 Trichoncusvillius 28 -0.79 0.92 -1.00 -1.00 -1.00 -1.00 Thanatusarenarius 140 -0.76 0.90 -0.54 -1.00 -0.91 -1.00 Zeloteselectus 73 -0.96 0.90 0.31 -0.83 -0.77 Haplodrassusisaevi 37 -0.69 0.88 -1.00 -1.00 -1.00 ) 102 TV.Piterkina Species Numberof Habitats specimens 1 2 3 4 5 6 Gnaphosaleporina 24 -1.00 0.81 -1.00 -1.00 0.30 Thanatusatratus 45 -0.52 0.81 0.40 -1.00 -1.00 -1.00 Zeloteslongipes 60 -0.62 0.79 -0.29 -0.63 -1.00 Evarchamichailovi 77 -0.92 0.77 -0.52 -1.00 -1.00 -1.00 Heliophanuskoktas 19 -1.00 0.77 -0.50 Pardosaplumipes 5 -0.45 0.77 -1.00 -1.00 -1.00 Drassodeslapidosus 4 -0.33 0.71 -1.00 -1.00 -1.00 Clubionagenevensis 27 -0.26 0.66 -0.74 -1.00 -1.00 -1.00 Drassodesvillosus 7 -0.25 0.66 -1.00 -1.00 -1.00 Alopecosaschmidti 31 -0.24 0.65 -1.00 -1.00 -1.00 Thanatuspictus 96 -0.11 0.57 -0.16 -1.00 -1.00 -1.00 Thanatussp. 8 0.00 0.49 -0.05 -1.00 -1.00 -1.00 Alopecosataeniopus 41 -0.65 0.47 0.25 0.30 -0.63 Agynetasaaristoi 30 -0.05 0.43 -0.54 -1.00 -0.39 -1.00 Haplodrassussignifer 45 0.05 0.42 -1.00 -1.00 -0.65 Eresuskollari 13 0.13 0.39 -1.00 -1.00 -1.00 Gnaphosataurica 135 -0.31 0.38 0.35 -0.36 -0.10 Xysticusstriatipes 426 -0.60 0.35 -0.03 -0.29 -0.80 -1.00 Agroecamaculata 61 0.15 0.33 -1.00 -1.00 -0.73 Philaeuschrysops 5 0.20 0.32 -1.00 -1.00 -1.00 -1.00 Simitidionsimile 9 0.12 0.32 -0.54 -1.00 -1.00 -1.00 Scotarguspilosus 4 0.20 0.32 -1.00 -1.00 -1.00 Xysticuscristatus 43 0.20 0.32 0.22 -1.00 -1.00 -1.00 Trichoncoidescf.piscator 11 0.41 0.32 -1.00 -1.00 -1.00 -1.00 Zelotessegrex 15 0.26 0.26 -1.00 -1.00 -1.00 Aelurillusv-insignitus 30 0.20 0.13 -1.00 -1.00 0.01 Alopecosacursor 34 0.26 0.27 -1.00 -1.00 -1.00 Gibbaraneabituberculata 82 0.09 0.02 -0.10 -1.00 -1.00 -0.90 Philodromushistrio 18 -0.01 -0.11 0.12 -1.00 -1.00 -0.90 Oxyopeslineatus 43 -1.00 -0.62 0.84 -1.00 -1.00 -1.00 Neosconaadianta 23 -1.00 -0.42 0.73 Argiopelobata 4 0.03 -1.00 0.69 Thanatusoblongiusculus 99 -0.51 -0.53 0.67 Aculepeiraarmida 53 -0.49 -0.53 0.66 -1.00 -1.00 -1.00 Oxyopesheterophthalmus 29 -0.60 -0.43 0.64 -1.00 -1.00 -1.00 Thomisusonustus 20 -0.71 -0.23 0.54 Dictynalatens 45 0.02 -0.63 0.50 Agynetaspp. ($ 29 -0.01 -0.38 0.34 -1.00 -0.25 -0.09 Heliophanuslineiventris 75 -0.38 0.01 0.22 -1.00 -1.00 -1.00 Heriaeusmelloteei 10 -0.04 -0.15 0.18 -1.00 -1.00 -1.00 Pardosaxinjiangensis 6 -1.00 -1.00 1.00 -1.00 -1.00 Micariarossica 7 -0.25 -0.13 0.92 -1.00 -1.00 Pseudeuophrysobsoleta 5 -1.00 -1.00 0.91 0.63 0.40 Ermetusinopinabilis 8 -0.33 -1.00 0.90 0.59 -1.00 Titanoecaquadriguttata 3 -1.00 -0.02 0.88 0.53 -1.00 Zelotesatrocaeruleus 6 -0.14 -0.02 0.88 -1.00 -1.00 Xysticusninnii 85 -0.79 0.24 0.22 0.86 0.04 -0.42 Tibiasterdjanybekensis 24 0.56 -1.00 -1.00 0.83 -0.49 -1.00 Zelotesgallicus 96 -1.00 -1.00 0.83 0.75 0.47 Mangoraacalypha 5 0.23 0.49 -1.00 0.69 -1.00 -1.00 Cheiracanthiumpennyi 24 -1.00 0.10 0.10 -1.00 1.00 -1.00 Pisauramirabilis 105 -1.00 -1.00 0.13 0.91 0.37 Zorapardalis 56 -1.00 -0.68 0.10 0.88 0.28 Lathysstigmatisata 93 -0.80 -0.25 -0.25 0.21 0.70 0.37 Titanoecaschineri 73 -1.00 -1.00 0.55 0.87 0.44 Xysticusluctator 198 -1.00 -0.98 -1.00 0.73 0.80 W Spidercommunityinasemi-desertof -Kazakhstan 103 Species Numberof Habitats specimens 1 2 3 4 5 6 Drassylluspusillus 90 -1.00 -1.00 0.40 0.63 0.83 Sitticuszimmermanni 29 -1.00 -0.87 0.42 0.55 0.84 Ozyptilapraticola 155 -1.00 -1.00 -1.00 -1.00 0.60 0.88 Xysticusrobustus 10 -1.00 -1.00 -1.00 -1.00 0.68 0.84 Zelotessubterraneus 3 -1.00 -1.00 -1.00 -1.00 1.00 Philodromuscespitum 5 -1.00 0.10 0.10 -1.00 -1.00 1.00 Agroecacuprea 4 -1.00 -1.00 -1.00 -1.00 1.00 & not revealed for snout-beetles (Coleoptera, Curcu- Makarova, A.B. Babenko L.D. Penev (Eds.): lionoidae) investigated at the Dzhanybek Station Species and communities in extreme environments. duringthe sameperiod.Thesephytophagousinsects Festschrift and a Laudatio in Honour ofAcademician & KMK showed thattheinfluenceofbetween-habitatdiffer- Yuri Ivanovich Cherno&v. Pensoft Publishers entiationonthestructureoftheirpopulations—which ScientificPre&ss, Sofia Moscow,pp.403-418 wasdeterminedbytheircloselinkswiththeplantson ESYUNIN S.L. V.E. Efimik (1998): Remarks on the which theyforage (KHRULEVA et al. in press) -was Usrtaelpspespliadnedrsfcaaupneas,8o.fNtehweaSnodutunhidUernatlisf.ie-dAspretchiersopfroodma much stronger than seasonal changes. Spiders being Selecta7: 145-152 agroupofmobilegeneralistpredatorsaremorelikely EsyuninS.L.,T.K.Tuneva&G.S.Farzalieva(2007): to be influencedbyabiotic factors. TheremarksontheUralspiderfauna(Arachnida,Ara- nei),12.SpidersofthesteppezoneofOrenburgRegion. Acknowledgements -Arthropoda Selecta 16(1):43-63 I would like to thank the managers ofthe Dzhanybek Khruleva O.A., B.A. Korotyaev &T.V. Piterkina Research Station for the opportunityto workthere. I am (inpress): [Stratification and seasonal dynamics ofthe also thankful to Kirill G. Mikhailov for the material he weevil (Coleoptera, Curculionoidae) assambleges in collectedin 1984 and forhisvaluable advice, aswell as to the Northern Caspian semi-desert]. - Zoologicheskii thefollowingarachnologistcolleagues,GalinaN.Azarkina, Zhurnal90 [in Russian] AlexanderV.Gromov,DmitriV.Logunov,YuriM.Maru- KOVBLYUKM.M. (2006): [Gnaphosidae spiders (Arach- itsihnked,ierVblhtaeedldipmtiionriaIdl.leOnsvttitafsfyfhiaonrfgestnhokeom,eLaaonbfodtrhAaentdsoprrieydieorVf.taTSxayann.aeIscaeovmliotdgceyhepfflooyrr onifdZao:oAlroagnye,iU)kirnaCnriiamneAacnafdaeumnay].ofPShciDenTcheess,eKsi,eIvn.s1ti8tpupt.e [inUkrainian] theirconstanthelpandencouragement.SergeiI.Golovatch kindlycheckedthe Englishofanadvanceddraft. KRIVOLUTSKII D.A. (1971): [The population oforibatid ThestudywassupportedbytheRussianFoundationfor mitesinthe soils oftheNorthern Caspian semi-desert BasicResearch,theProgram“TheOriginandEvolutionof andtheirchangesundertheinfluenceofafforestation.] theBiosphere”,theProgramfortheSupportoftheLeading In:RODEA.A.(Ed.):Zhivotnyeiskusstvennykhlesnykh Academic Schools andYoungScientists. nasazhdeniivglinistoipolupustyne.Nauka,Moscow,pp. 13-23 [in Russian] & References Lindeman G.V., B.D.Abaturov,A.V. Bykov V.A. CHERNOVAN.M.(1971):[Springtailsofplantationsinthe LOPUSHKOV(2005):[Dynamicsofthevertebrateanimal Northern Caspian clayeysemi-desert] In: RODEA.A. population in semidesert ofthe area east ofthe Volga river]. Institute ofForestry, Nauka, Moscow. 252 pp. (Ed.):Zhivotnyeiskusstvennykhlesnykhnasazhdeniiv [in Russian] glinistoi polupustyne. Nauka, Moscow, pp. 24-33. [in Russian] MlLKOVF.N.&N.A.GVOZDETSKY(1986):[Physicalgeo- DUFFLEY E. (1962): A population study of spiders in graphyoftheUSSR].VysshayaShkolaPubis.,Moscow. limestonegrassland.Thefield-layerfauna.-Journalof 512pp. [in Russian] AnimalEcology31:571-599. PESENKOY.A.(1982): [Principlesandmethodsofquanti- EfimikV.E., S.L. Esyunin &S.F. Kuznetsov (1997): tativeanalysisinfaunisticalresearches].Nauka,Moscow. RemarksontheUralsspiderfauna,7.Newdataonthe 288pp. [in Russian] fauna ofthe Orenburg Region (Arachnida, Aranei). PITERKINAT.V. (2009): Spiders (Arachnida,Araneae) of -Arthropoda Selecta6: 85-90 the Dzhanybek Research Station,West Kazakhstan: a localfaunainabiogeographicalaspect.In:GOLOVATCH ESYUNINS.L.(2009):Geographicalvariationinspideras- S.I.,O.L.Makarova,A.B.Babenko&L.D.Penev semblages(Arachnida:Aranei)ofsteppeandsteppe-like habitatsoftheUrals,Russia.In:GOLOVATCHS.L,O.L. (Eds.): Species and communities in extreme environ-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.