ebook img

Projeto de ponte em concreto armado com duas longarinas PDF

154 Pages·2002·1.19 MB·Portuguese
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Projeto de ponte em concreto armado com duas longarinas

1 UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA CIVIL Projeto de ponte em concreto armado com duas longarinas Daniel de Lima Araújo Apostila da disciplina Pontes do curso de Engenharia Civil da Universidade Federal de Goiás. Goiânia Março de 1999 2 APRESENTAÇÃO Este texto foi elaborado para servir como material didático aos alunos da disciplina de pontes, ministrada no 5o ano do curso de engenharia civil. Ele tem por objetivo detalhar, de forma didática, o projeto estrutural de uma ponte em concreto armado com duas longarinas. Foi escolhido para análise um dos projetos de ponte realizados pelo autor quando de sua atuação como projetista em escritórios de cálculo em Goiânia. O projeto escolhido foi o da ponte sobre o rio Pau Seco, localizado na TO-373 no trecho entre Alvorada (TO) e Araguaçu (TO), o qual foi encomendado pela Secretaria de Estado da Infraestrutura do estado do Tocantins e foi desenvolvido pela GEOSERV - Serviços de Geotecnia e Construção Ltda - sob a responsabilidade do autor. Esta ponte possui um comprimento total de 64 m, distribuído em um vão central de 20 m, dois vãos adjacentes de 18 m e dois balanços de 4 m. A estrutura é simétrica, com duas vigas principais, e o tabuleiro tem uma largura total de 9 m. Os aparelhos de apoio são constituídos por rótulas de concreto e a fundação é constituída por tubulões encamisados executados com auxílio de ar comprimido. No primeiro capítulo são abordados os elementos necessários para a elaboração de um projeto de ponte. No segundo capítulo são realizados o dimensionamento e o detalhamento da superestrutura, e no terceiro capítulo são realizados o dimensionamento e o detalhamento da mesoestrutura (pilares e aparelhos de apoio). Espera-se com este texto contribuir na formação dos alunos do curso de engenharia civil da UFG, na medida em que eles adquiram conhecimentos suficientes para o projeto de uma das mais simples pontes em concreto armado e também da mais corriqueira em nossa região. Goiânia, março de 1999 Daniel de Lima Araújo 6 1. ELEMENTOS PARA ELEBORAÇÃO DO PROJETO 1.1 Introdução O projeto de uma ponte inicia-se, naturalmente, pelo conhecimento de sua finalidade, da qual decorrem os elementos geométricos definidores do estrado, como, por exemplo, a seção transversal e o carregamento a partir do qual será realizado o dimensionamento da estrutura. Além dessas informações, a execução do projeto de uma ponte exige, ainda, levantamentos topográficos, hidrológicos e geotécnicos. Outras informações acessórias, tais como processo construtivo, capacidade técnica das empresas responsáveis pela execução e aspectos econômicos podem influir na escolha do tipo de obra, contudo não serão abordados neste texto. O objetivo deste capítulo é apresentar alguns dos elementos indispensáveis para a elaboração de um projeto de ponte e que devem estar disponíveis antes do início do projeto definitivo da estrutura. 1.2 Elementos geométricos Os elementos geométricos aos quais o projeto de uma ponte deve atender derivam das características da via e de seu próprio estrado. Os elementos geométricos das vias dependem de condições técnicas especificadas pelos órgãos públicos responsáveis pela construção e manutenção dessas vias. No caso das rodovias federais, o Departamento Nacional de Estradas de Rodagem (DNER) estabelece as condições técnicas para o projeto geométrico das estradas e das pontes enquanto que no estado as rodovias estão sob a responsabilidade do Departamento de Estradas de Rodagem de Goiás (DERGO). Segundo o DNER, as estradas federais são divididas em: • classe I • classe II • classe III As velocidades diretrizes, utilizadas para a determinação das características do projeto de uma estrada, são definidas em função da classe da rodovia e do relevo da região (Tabela 1.1) 7 Tabela 1.1 - Velocidades diretrizes (Km/h) em rodovias federais. Região Classe I Classe II Classe III plana 100 80 70 ondulada 80 70 60 montanhosa 60 50 40 O desenvolvimento planimétrico e altimétrico de uma ponte é, na maior parte dos casos, definido pelo projeto da estrada. Isso é verdade principalmente quando os cursos de água a serem transpostos são pequenos. No caso de grandes rios, o projeto da estrada deve ser elaborado já levando em consideração a melhor localização da ponte. Dessa forma, deve-se procurar cruzar o eixo dos cursos de águas segundo um ângulo reto com o eixo da rodovia. Além disso, deve-se procurar cruzar na seção mais estreita do rio de forma a minimizar o comprimento da ponte. Para as rodovias federais, os raios mínimos de curvatura horizontal são fixados com a finalidade de limitar a força centrífuga que atuará no veículo viajando com a velocidade diretriz (Tabela 1.2). Tabela 1.2 - Raios mínimos de curvatura horizontal (m) em rodovias federais. Região Classe I Classe II Classe III plana 345 200 110 ondulada 210 110 50 montanhosa 115 50 30 As rampas máximas admissíveis, até a altitude de 1000 metros acima do nível do mar, são mostradas na Tabela 1.3. Esses valores poderão ser acrescidos de 1% para extensões até 900 metros em regiões planas, 300 metros em regiões onduladas e 150 metros em regiões montanhosas, e deverão ser reduzidas de 0,5% para altitudes superiores a 1000 metros. No caso corrente de estradas com pista de duas faixas de tráfego, as normas do DNER adotam as seguintes larguras de pista: • classe I : 7,20 m • classes II e III: 6,00 m a 7,20 m Nas estradas com duas pistas independentes com duas faixas de tráfego cada uma, a largura da pista utilizada é de 7,00 m. Os acostamentos têm largura mínima variável conforme a classe da estrada e a região atravessada. Nas estradas de classe I, 8 em geral adotam-se acostamentos de 2,50 m de largura, resultando a largura total do terrapleno igual a 2,50 + 7,00 +2,50 = 12 m. Tabela 1.3 - Rampas máximas (%) em rodovias federais. Região Classe I Classe II Classe III plana 3 3 3 ondulada 4,5 5 5 montanhosa 6 7 7 1.2.1 Elementos geométricos das pontes 1.2.1.1 Largura das pontes rodoviárias As pontes rodoviárias podem ser divididas quanto à localização em urbanas e rurais. As pontes urbanas possuem pistas de rolamento com largura igual a da via e passeios com largura igual a das calçadas. As pontes rurais são constituídas com finalidade de escoar o tráfego nas rodovias e possuem pistas de rolamento e acostamentos. Durante muitos anos, as pontes rodoviárias federais de classe I foram construídas com pista de 8,20 m e guarda-rodas laterais de 0,90 m de largura, perfazendo a largura total de 10 m (Figura 1.1.a). Havia, portanto, um estrangulamento da plataforma da estrada que provocava uma obstrução psicológica nos motoristas que causava acidentes. Nos últimos anos, o DNER passou a adotar para a largura das pontes rurais a largura total da estrada (pista + acostamento) e guarda-rodas mais eficientes (Figura 1.1.b). Em regiões com pouco tráfego, alguns órgãos públicos ainda recomendam a redução da largura da ponte. Dessa forma, o Departamento de Estradas de Rodagem do Tocantins ainda adota a largura de 9,00 m para as pontes, conforme mostrado na Figura 1.2. 9 10,0 m 0,90 8,20 m 0,90 a) 13,0 m 0,4 12,2 m 0,4 b) Figura 1.1 - Exemplos de seções transversais de pontes rodoviárias federais. 9,0 m 0,4 8,2 m 0,4 Figura 1.2 - Exemplo de seção transversal de ponte rodoviária empregada no estado do Tocantins. 1.2.1.2 Gabarito das pontes Denomina-se gabarito o conjunto de espaços livres que deve apresentar o projeto de uma ponte de modo a permitir o escoamento do fluxo. A largura das pontes indicadas nas figuras 1 e 2 é um exemplo de gabarito das pistas de pontes de modo a permitir o fluxo de veículos sobre elas. As pontes localizadas sobre rodovias devem respeitar espaços livres necessários para o tráfego de caminhões sob elas(Figura 1.3). As pontes construídas sobre vias navegáveis também devem atender aos gabaritos de navegação dessas vias. Por exemplo, em vias navegáveis a chatas e rebocadores, é comum prever-se a altura livre de 3,5 m a 5,0 m acima do nível máximo a que pode atingir o curso d’água. A largura deve atender a, pelo menos, duas vezes a largura máxima das embarcações mais um metro. 10 Nas pontes construídas sobre rios não navegáveis, adota-se, normalmente, uma altura livre acima do nível máximo d’água de acordo com as recomendações do órgão oficial responsável pela obra. No estado do Tocantins, por exemplo, a altura livre recomendada é de 1,5 m. 12,0 m 5,5 m 2,5 m 7,0 m 2,5 m acostamento pista acostamento Figura 1.3 - Gabarito para pontes sobre rodovias federais. 1.3 Elementos topográficos O levantamento topográfico, necessário ao estudo de implantação de uma ponte, deve constar dos seguintes elementos: • Planta, em escala de 1:1000 ou 1:2000; perfil em escala horizontal de 1:1000 ou 1:2000 e escala vertical de 1:100 ou 1:200 do trecho da rodovia em que ocorrerá a implantação da obra em uma extensão tal que ultrapasse seus extremos prováveis de, pelo menos, 1000 metros para cada lado. • Planta do terreno no qual será implantada a ponte, em uma extensão tal que exceda de 50 metros, em cada extremidade, seu comprimento provável e largura de 30 m, desenhada na escala de 1:100 ou 1:200, com curvas de nível de metro em metro, contendo a posição do eixo locado e a indicação de sua esconsidade. • Perfil ao longo do eixo locado na escala de 1:100 ou 1:200 e numa extensão tal que exceda de 50 metros, em cada extremidade, o comprimento provável da obra. • Quando se tratar de transposição de curso d’água, seção do rio segundo o eixo locado, na escala 1:100 ou 1:200, com as cotas de fundo do rio em pontos distanciados cerca de 5 metros. 11 1.4 Elementos hidrológicos Os elementos hidrológicos recomendados para um projeto conveniente de uma ponte são os seguintes: • Cotas de máxima cheia e estiagem observadas com indicação das épocas, frequência e período dessas ocorrências. • Dimensões e medidas físicas suficientes para a solução dos problemas de vazão do curso d’água sob a ponte e erosão do leito, quais sejam: a) área em km2 da bacia hidrográfica a montante da obra até a cabeceira; a) extensão do talvegue em km, desde o eixo da obra até a cabeceira; a) altura média anual das chuvas, em milímetros; a) declividade média do espelho d’água em um trecho próximo da obra, de extensão suficiente para caracterizá-la, bem como indicações concernentes à permeabilidade do solo, existência na bacia hidrográfica de vegetações e retenções evaporativas, aspecto das margens, rugosidade e depressões do leito no local da obra. • Notícias acerca de mobilidade do leito do curso d’água e, acaso existente, com indicação da tendência ou do ciclo e amplitude da divagação; alvéos secundários, periódicos ou abandonados, zonas de aluviões, bem como de avulsões e erosões, cíclicos ou constantes; notícias sobre a descarga sólida do curso d’água e sua natureza, no local da obra, e sobre material flutuante eventualmente transportado. • Se a região for de baixada ou influenciada por marés, a indicação dos níveis máximo e mínimo das águas, velocidades máximas de fluxo e de refluxo, na superfície, na seção em estudo. • Informações sobre obras de arte existentes na bacia, com indicações de comprimento, vazão, tipo de fundação, etc. • Notícia sobre serviços de regularização, dragagem, retificações ou proteção das margens. De posse dessas informações, procede-se ao cálculo da cota de máxima cheia que definirá a altura livre e a cota da face superior do tabuleiro da ponte. Nesse momento, o projetista pode se defrontar com duas situações. Numa primeira situação ela já possui a cota da face superior do tabuleiro definida pelo projetista da estrada. Normalmente essa cota situa-se, aproximadamente, a 40 cm acima da cota de terraplanagem, contudo deve ser verificada para cada projeto com o projetista da estrada. Neste caso, após a definição da cota de máxima cheia calculada e após 12 adicionado o valor da altura livre, o projetista da ponte obtém a altura disponível para a construção. Num procedimento inverso, ele pode definir a altura de construção (definida em função do sistema estrutural da superestrutura) e em seguida verificar se a altura livre disponível é superior ao valor mínimo requerido pelo gabarito da ponte. Numa segunda situação, o projetista da ponte calcula a cota de máxima cheia e, após adicionada as alturas livre e de construção, obtêm a cota superior do tabuleiro, a qual é, então, repassada para o projetista da estrada. Essa situação é, sem dúvida, a mais cômoda para o projetista da ponte. A cota de máxima cheia calculada pode ser obtida por diversos métodos da engenharia hidráulica. Quando a ponte for construída sobre rios com grandes vazões, deve-se tomar o cuidado de evitar o refluxo a montante da ponte devido ao estrangulamento da seção de escoamento pela construção do aterro da estrada (Figura 1.4). Em alguns casos, esse refluxo pode atingir grandes distâncias e diminuir a altura livre sob a ponte. Eixo da estrutura Início do refluxo Nível original Montante Jusante a) Eixo do curso d’água Máxima cheia calculada (MCC) Região alagada Seção de escoamento (reduzida) b) Perfil longitudinal da estrada Figura 1.4 - Refluxo a montante da ponte devido ao estrangulamento da seção de escoamento do rio. No caso de pequenos rios, ou seja, aqueles que possuem pequenas vazões, é possível calcular a cota de máxima cheia pela conhecida fórmula de Manning empregada em canais abertos. Para tanto, é admitido a existência de um canal regular com seção transversal igual à seção de escoamento sob a ponte e, por um processo de tentativas, é 13 calculada a área necessária para escoar a vazão máxima de projeto do curso d’água. A fórmula de Manning é expressa por: V = 1.R23.I12 (1.1) n H V : velocidade média de escoamento (m/s); n : rugosidade do canal; A R = : raio hidráulico; H P A : área da seção de escoamento (m2); P : perímetro molhado (m); I : declividade média do leito. A vazão de escoamento é dada por: Q = V. A (m3/s) Na fórmula de Manning, a área da seção de escoamento empregada é uma simplificação da seção real. Para ilustrar o procedimento de cálculo, é mostrado a seguir a determinação da cota de máxima cheia do rio Pau Seco. Nesse projeto a cota superior do tabuleiro já era conhecida do projeto de terraplanagem. A altura de construção foi obtida pelo pré-dimensionamento da estrutura lançada. A cota de máxima cheia foi calculada pela fórmula de Manning e a altura livre assim obtida foi comparada com o valor mínimo exigido pelo órgão contratante do projeto (nesse projeto, igual a 1,5 m). Dados de projeto: Q = 691,02 m3/s n = 0,035 (canal com vegetação) I = 0,0016 (obtido da topografia) cota de fundo: 208,68 (m) Cota superior do tabuleiro (220,000) Altura de construção (1,8 m) Altura livre (2,12 m) M.C.C. (216,080) A Figura 1.5 - Seção transversal do rio Pau Seco empregada no cálculo da máxima cheia.

Description:
A estrutura é simétrica, com duas vigas principais, e o tabuleiro . As pontes urbanas possuem pistas de rolamento com largura igual a da via e.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.