ebook img

NASA Technical Reports Server (NTRS) 19930019554: The emulsion chamber technology experiment PDF

37 Pages·1.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 19930019554: The emulsion chamber technology experiment

RSF N" 23/1123 AY Page 15 O.N.E.R.A. N93- 28745' _29 =,/o50 KNNEXE A DEVELOPPEMENT D'UN CODE EULER MULTIDOMAINE 3D Par Ph. GUILLEN et M. DORMIEUX RSF N" 23/1123 AY Page 16 DESIGN OF A 3D MULTIDOMAIN EULER CODE Ph.Guillen ONE.RA.Ae,o_asamic¢Deparontat 29Avrau__ItlaDivisioLazclzrc-92J20CHA TTLLON (Fraace) md M. Dormieux AE_OSPATIAL_. Division £ntls_ Tac_qut, 2d18R_,Biro_a_r-92320CHATILLON [Fral_e) ABSTRACT A MultidomainEulerCodehasbeendevelopedto numericallysimulateflowsoflastsof different nature aroundcomplex configurations with an emphasison supersonic and hypersonic flows._ main choices concerning computational and numerical aspects ate described. The code hasbeenwriuen in order to allow easy implunentaxion o( new boundary _-eaum-.nourfun_r extensiontsomoreccxnplex_u .ofequationsS.ome typicalresults concernincglassicsahlapes_.4_rsonkandhypersoniHcermes shutdeandu'znsverstexxjets Ireshown. EqTRODUCTION The developmen[ofindustrinaulmericalcodestosolvetheequationsoffluidmechanics representsan imponam investmentwith some uncertain prospectivechoicesto bemade. Tbes__ years quiteanimponzm numberof _n'lctive methods havebeenproposed for the simulation of perfect fluid flows around 3D conflllurations: finite volume or finite element memods,us/ngsuuctm'edor_u_d Fids, havingacenteredoranon<entered numerical scheme,etc... Theselection of themost promising meLhodseemsto bean hazardousand d/ffkult choice., monetofcompe:_nisebetweendiffetem¢ormderarionswhicharegene_lly conn'-_licxx'y. Moreover son_ imponamtelements ofchoice, such astheavailablecomputer I_.hnolog7 ate difficutlotbeestimatedanditb ckm' IJ_ttheevaluationofthealgorithm ¢_icieneyisquitedifferen_t¢¢ordin|tothekindofprocesslngs:calarv,ectororparallel, Fromanindusu_xplointofviewoncethedesirekdvelofac_ Isre.acbebdyth_method, themostimp:)ctaqnutalitoyfthecod=isrobustneswshich canlead to selecallgorithmnsot very computadoaallycfficic_LAnotherimportantpointto beconsideredisd_ extension of thecodeu)amorecompk:xsetofequationsofd_csamefamily.Forinstancenumerical codes solvingtheEulersetofequationfsoraperfecgtaswillprobablyhavetobeextendedtomore complexsuueequations ortomulti-speciesgassoon_ orlater.Theeasyimplementationof new boundar)v,eacrnenubymeansofamodu_ coding.M wellasugonomicconsiderations atealsoveryimportanrtnacterfsorfuturedevelopment,riduseofthecode.Theaimofthis paperistcpresenat3D Eulercodedevelopedforthenumericalsimulatioonfflowsofgases ofdifferenntaturekeepinginmindall_hepointsstatedbefore_. differengtasesconsidered ateped'ecgtas.realgasa[equilibriunmndnon.reactivte*o-s'pecimeisxtureI.nafirsptan, thechoicesfeudingtotheotchitectuot4¢"thecodeatedescribeTdh.esecondpande',dwsiththe numericalschemeanditsimplementationL.asdythethirdpanexhibiusome firsrtesults ob_ncd. RSFN" 23/1123 AY Pagp 17 I. ARCH]TECTURE OFTTi_CODE:GENI_RALCONSIDERA_ONS The mrchitec_uteo( the code hasbeen dicmu_dby consta'aintsconcemin| |eome_cal _radons, computadomdaspectsandthespecif_nanzR_ theflow. _al corL_idcratic¢_ The _..auT_nt of compk:x geometries "hasled us to_$opl a mukiblock grid mm:Mof sevend Slructured, poss/bly ovedappinI orpincheddommns.Thischoiceco_sideJ'ablysimplifiesthe meshcoeum_tionandallowsIJ_same|en¢ndityIs unso_lxn'edIFid.s.Suchmu]6block I_d SmUCCiesa_ cutrtndy _inll devek:q:zdatOHER.A [I] andAF.ROSPATIALE [2]and will be implementedwith thecode.Another interestingpossibilityhasbeenintroducedto enable di_ent kux_ofbounda_conditionsoni IEivcackxnam Tbe consvain:sconcemin| the compu,,,Uon_lupect$ ,re clearly linked ,.otheavaitable computer tochnololfy. FromthispointOfview. vectcr andpm-allelprocessinghavebeen consi<k:rcdA. naturalideainmu]tidomaincodesistodism'bu,,"eachdomainonsprocessor. butthiscouldbeno_soinmresx.inpgracticallysincethedomainshaw verydifirutnt numbers points inusualsituationsandmosxoftheprocessorswill havetowait for chosedealin$ with _ $,rtates_ domains. From this synchronizltion waiting.dine point of view a coc_ basedon thecomputationof s_:_u'atedplanesseemsmoR inmrcsdn$. Anotheafavor'ab_e computadonaJ_p¢ct ofaptm_ su'uctu_ isthst thewc_tr.in| Ifrsys for _ num_cal scheme are_ldressed by two indicesand henceno( very expensiveincore for I/_ pfcs_rlt time computers.This can bevery interesdn| especiallyin I/_ cue of implicit allp_rithms. Of cour_ this way of limitin| d_ arntys indexedbythreeindicesRstricts the choiceof 3D aiip_ithrns. For instanceAD[ inthe3direcdoe.s is no more possible.Wid_this choiceand for meshesof acurrent;ndusui_lsized'mtis tOsayabout20(XXX)nodes it is possible to wodc without anymassiveI/Co)naccxn_ter withafew mepwoNs ofmemory co_. Foesulxrson< I_ws itisvet,/impo,-umt totake_=lle of thehypcrbolk:propertyof the sxe.adyEulerequations (s¢¢[3] for in._ance)inIJ_main direcUo_by usin| spacenum:hin| u:chniqueswheneverpossible. Doing sotheCPU dinerequiredd_reates by _morderof ma_itu_. Thefact that, plate of adomaincanbecompu_l separately allows to m_c multiblock space.mm'_hin| computationsplan_ by plane without any additional efforL Anotherconsequenceofthissupersonicnmun:is that forsv._y probk:msthe_mre ofthe computationcanbedifferenctlc_ndinlolnthedomain.A blockwithasubsonicpocketsuch asthebluntbodypurrwill haveto becalculau_dinanuns_y w,y, _ do_'nsutam panof Now with a spuce-mm_:hinl[ strategy. Possiblysome real gaseffects will have to be considereidnsomepunsof the1low_ no( inod_nLTheorderinwhu:hthedifferenbtioc_ have m becomputedis no(obvious,andit isnomor_possiblem i_rate similarlyinall domainsasit canbedonefoetransoniccomputadous.Thecompul,IUontUl.Stobe managed byacommandint=rpreu:rmallow ace.r_inflexibility. Itresulu ina code organisatiobnuiltaround3 keyunits:a command interpretwehrich assumestheuserinterfacea,planemonitoringunitwhich decidesofthetypeofthe computauon,andap"lanperocessoirncludintghenumericalscheme,TheplaneIXOCeSSOi_s describetdhoroughliynthesecondpan.We nowdetaiallitdmcored_ twofirsutniu, The command interpreter is a language, this means_t the input file is interpreted dynamically.Asalangua$¢it hasto ownclassicMcontrol instructionssuchasDOloopsof s_temenLs, ]u mainfunctions arethefollowings. RSF N" 23/1123 AY Page 18 Monitori,_ tAecoee: The memoryallocatloa ismadesothatthearraysindexedbythe whole 3D d_ta ate reducedto theminimum, namely for unsmadyapplicationsthethree coordinatesplus thenecessary conservative variables(in numberequ,l to tha_of the equations ofthesys_m). Thiskind ofdam_ su)axltequentiaJlydomaina/_udomaininthe cote by chcmeanof poinu_rs.Monit_tnl thecoreconsistsin tm'ibutm| poinm'swhena new ck)n'_n iscrr..a_tof reorpnizinl kwh=n ado_a_ hatsbeencompuu_l_ isnomore w_,fuL The samekind olrmonilcrin| is made for thedamn_cessarytocouplingboundary co_Sdonswhere 4_incar lnu_o_n| damhavembek_x for_ch node invo4ved [4]. D_t _,mo4y._,_: _u : Accordinl m @_etemdymmic condition4s_Rc_t_t_ o_ systemso(unitscanbeap_r_ For Sowsuperloniccompuuttioasit mightbeinu_tsdn| m_fme _c variablerselatively © criticcaolndi_ @uuisIou_ vMucs ckfmedfor asonic flow. For hy_rsonic now the _ o4'Moiliettableskadsm Stunits.Fromanethic poim of view it hasaLsoseemed inmn_sdn| m&1_ lhcoppo_uniW mthe usa ,o use a sitoLpossiblcways04"dcfinm| chetmodymimic Def_.'da!sche,,ep_'a,nerers _ _o,_w7 co,_uw_ : Forins_mo=_c Cour4ncnumb_ :_ nam_ of _ boundar_ condiuo_ l_i_li:iI_dom_iavas_blts: Many o_tiort_s beused.Initialization c=nbem_Ic by mear_ of formatted oeunforma::e_dIcs. with umi[oem states previously _fined. Ifnecessary it canbe done onapnnofa dommnonly. f.z_b_ a_:a: This includesno_only resuhtiers tobeinteqxtted trotalso intefmedta_ printingsandcr_aUonofPINGS metafilcs coaudnial gntptw._data. C_I_ l _Arpirate,,,on_;o, : And_ook)inI c_lMI [he8umerk_ scheme. As me c,_culauon is b,wd on thecompuu_km o( se_ planes, di_en_m kinds of czkuLmonscanbcmack_ccon_nI mthewayU_cs=planes_ computed: U_s_,_ws : Thetime ssc'_isthesameforevet,ycelloLc'_trydomain. P._do _,,.steaa_,rio,v, : The soluuonis..4vmccd inu unne.ady w,y bu_wtt._out takinI o( the phys,c.almeaning 04'theflow befo_ _ot_ver_enc_ 5p_cem_'cA_.I compu_on : Thesolution ona_ysic_ _ iSadvtnced tillconvergence before comp'alinli ll_ next physical p.l_nc. Since there are basically two kinds of calculation, space marching and unsteady compuumons,d_m are_Jsotwo kinds o/' multidommn sult_|ies. A plane multidomain su'lte_y wh¢_ all theplanesof different domainsr.oa_Ji:x_dinl to a physicalplane are calculated u_gethct, and amore classical way where the solution is advtnced on a whole domainbeforecons,dcnn|anotherone. 2._ NUN_RICAL SCHEb_. Formulation Theun.,_ady3D Eukeequations_ "m'it_n inconservationform: Wt*Fx*Gy*Hz=O where, forinstance, foraone species I_rfecl g_ w=t(p, pu. Or.pw. e) RSF N" 23/1123 AY Page 19 F=t(pu. p*pu2,puv.puw.(e÷p)u) G=t_v. puv. p_v2, pv.. (e÷p)v) H=t_w. puw, pvw. _,¢w2. (e÷p)w) P"('r"IXe-l/2.0.(u2*-v2÷w2)) To solvethemweuseanimplicitupwindTVD finite volumeschemeotrVanLeer MUSCL type. To obtain_ maximumbenefit from thestructmtd oqlantsttion of thegrid andthe oqanisation b7planeof thecode,theimplicit perto0esistsinanADI like inversionine_ch planecou#edwithaGam;-S4:icle.Ilikerelaxation Lathethirddirectioe.Basicallythescheme comprises the 3 folLowin| Ui.a. j+_.. k÷_ • Uij,k * o giijk * _,IJijk *I_lkijk whereU=P"I(W) isasetofvariables.To ixtservestabilityneardiscoetinuitiesitisnecessary mintroducelimitersineachdirection: if o.i+1/2- Ui.l j.k.Uij.k #ijk'limiter(oi+ 1/2._. 1/2) Many limite_ hzve _ implemen_d tmon$ _ u_ "minmod"[5],Van Leer [6],Van ,Ml_la [TI. and "supcr_" [51formulauons. The secot v_ial_s canbe chosen amonI u_ coeservtdve,rite p_mitive _o.u,v.w,p)orthecharacteristic_ Thentheschemefulfills a monodime_ "r'vD 2) ¢onWa:_ioa _zhe _/_it p_'r _W_ p= .&_eVol(Fi. i/2.Fi. I/2.,.G_, I/2.Gj. l/2*Hk÷ I/'2"Hk.1/2). where Fi,,.l/2 (rtsp. G, H) istn rv_du_Uonof thefluxesat aninterfaceofthecell control volumebymeansofanapproximateRiemannSolverbetweenthetwoseamsoneachs_dcof theinterface cak:utau:dinthefirst step. Many _roxirn_te Rierrumn5avers havebeentested: Forperfect gas_TheVan Leer($]. Roe[9]andOsher[1O]formulations Fcx amixture of nonreactivetwo species |as: Ab_tll [11] extension of Roe fluxes and AblgraH-Montagn_112]extension of Osherfluxes Foerealll:aswithanequilibrium assumlxi_: Vinokur.Montagn_ [13]ex_'nsion of VanLeer and Roe scheme, and AbgrtU-Montagn_ [12] extensim ofOsher scheme. 3)Co#_a._oa _tht implicit I_rt _ tack plane A.,_W-_Wex p where A canbeseenasanappmxtmalkm of whereF isanapproximation ofFx+Gy*H z Two approximationshavebeentested:thelinearizedconscrv=tiveimplicit formulation of Steger.Warmin$ and the linearized non conservative formulation of Harten.Yee [14] or _vat_y 1151. RSF N" 23/1123 AY Pag_ 20 Foeboundm'yconditionmsany v_unentshavebeenconsideredf,romVivia_.Veuillo[t16] compatibility rcl_tionsto moreclas_ca[fluxm_m'_nu andtheir_plicimions. Asitcanbeseen,Van Lee_sMUSCL approachpresentsseveraaldvzntsge:s The schemeisTVD andsowellsuitedforflowswiths_ongdiscontinuities. The extension to mo_ complicated stateequidons or mul_sl_cies coevecuve no_ so'mghfforwardbyimplementingthecorrespondinlnew approximateR_nann solver new jicobizn of the Nuxes. The rnod_Jc_locls _ rnm_ verylocally in_ cornpuu_c'odeInd theoverallarchitectuirsefullkyept.Moceoverellthemodification_s beaddedsothatwe have• undue source forall u'_ diffe_m kindso_flows. Formosx of the variantsofthescheme,no _ haw m befixedbythe user. To implementthisnumericalschemethefollowingstepsatecodedintheplaneprocessor whichadvancesthesoluUononaplan=koft dommn. 1.Re_ch o/ ime,_ecti, t bo_utary co_':io_. This sxepdeu:rmincasmong the bo4zndaryconditions thathave beendecl:urtehdosewhicharc co¢_ernodwiththisplane. 2. Treamera of geomttric s_t_"ies. In thoseroutinesboundarynodesincludingfictitious points mightIx moved inordertou_at some [eomevical singulm'tdeslike axesor somespecialboundaryve_unen_slike those ck_alingwithhalfcontrolvolumecell(forinstancewalllikeco_iuo_s) orsymmemy. 3. ComputationofmuetMc$. From thedataofeither thecellcenterosrthecell reflext,hett_bute_04'thecorttrolvolume as volume,diameter 04"the includesdphereo¢out'warndocmalvecu_ arecompuu_d. 4. Co_ou:ation of ume _ep. And thenrepeat _ following s_eps 5to 11forthe 3directions ij.k. 5.Treaunemo/boundarym_cle_. According totheboundaryu_am_m involvedc,onse:'v_vevaluesoffronder nodes(poss/bly fictitionuosdes)mighthavetobeassignebdeforethecomput,lti_onftheslofxaI.tconcerns nearly all the boundary conditions since the fictitio_ poinkt have at least tobeexwapolated. It is crucial fo¢ matching boundary conditiot%swhere the n<xJcsmight be interpolated into mother domain. 6. Compmation of Hopes. This is thepan I)ofmenumerical scl'.emcdescribed above. 7. Trea_nwmo/bow_ary imerfaces. [tconcernsboundarytreatmentfsorwhichthevalues_ Ln._ucodntheinterfacre_sr than _ thenodes. 8.Comp,.tatio_ o/fl_c This isthepun:2)ofthenumericalscheme. 9. Treaunem of bo,_ndaryfluzes. Here, boundary fluxes are possibly modified. For instance for a wall ueatment the flux computedbytheschemeisn:p[acebdyapressu_flux. 10.Comptaa_ion of implicit cO¢/ficient.¢. Thisispan3or _ numuic_l scheme. l1.Treaune,to/bou_da_ implicictot_c_eaz._ According to _hcboundaryconditions theimplicit malzices are modil'_l. 12.Explichresult. Oh•a/nedbysumming thefluxesitconstituttehserighthandsideoftheimpliciptart. 13.Resolution of _Aein_olicsiy!stem. ItconsistosfanADI likeinversiobnutseveraoltheroption,ssuchasaGauss-SeidelJ.acobi RSF N" 23/i123 AY Psge 21 algorithms canr_ily beimpMmentecL 14.Cotnl_i_lity relation teea:_ of awall bowsd_'y. it consisu in a modification o[ _ valuesg thefrontiers recording to compa[ibilizy I_dadons. This decompositiono[ thet/toridun codin| t/lows {heimplementationof atatgev&ie{y of u_,.tunents.To bemoreconcrete,letusudcethecas_of theimplementaUonof anexplicit wall westment condition and a machLng condition and see some of their possible implementations. For at%rstorder like cell mirror condition the f'_:ddousnode canbe imposed symmetrically to chcbo_ noclcmd sostop 5canbe used, For•secondorderlikecellmirro¢conditiontheoutwLrdin_rfacevaluecantximposed s'_nc_--'icaJlyto the innerinterface valueso_ step?isused. For acla.ssicaJ flux _enk f'_t t halfcontrol volume can bedefined next tothe wall and then thewill flux is _pliciUy computedas• pressurefl_. Su:p2and 9 areusedinthis case. For• compatibility relation u'cam_nt of aslip bcx_ (see [16] )cxdy s_ 14isused. Fog a matching condition amongmany possibilitiesthe two following ones have been irnplemencd: for anarea with asmoothflow, I secondorder ma,ehingconditioncanbe applied. The boundarynockanditsfictitious co_mterptnlureinterpolatedinthecouplingdomain.Then ordystep5isu._d. for an areawith suonggradientsa first orderroaching condition can beused.A connant distribu6on isintroducedin theboundarycell fortheoutw_d direction andtheexternal interfacevalueisinterlx3latedinthecouplingdomain.Thisctnbedonewithsteps5and7 3.CODE VALIDATION In thisFan someprclimintry rtsults showingsomepossibilitiesofthecodeareprcs_ntecL first ca.scpermitsthevalid_on ofthemulddom_n space.mashingstrategy.T'ncsecond case exhibits some results o6cainedon I more complex shape,the Hermes shuttle, in supersonicandhypersoniacerodynamic confections. The lastcaseillustratesimult_block computationofanonr:accivtewospeciesgasflow withm adequatere_ncmem. O_ve-cylinder.Rareconfiguration Experimentalrr..sultsonthisconfi|uraocn areavailable in[17]. Intheselectedtest case the Machnumberis2.96andtheincidence4degrees.ThreespacernarchinEcomputations have beenmade. TheI'u-stonewithI monodomain grid,thesecondonewithaconlinuoustwo domain grid,the"lasotnewith adiscontinuoustwodomaingrid (figureI).Fii;utt 2shows theMath numbcrconto_,1Onthebodyandintheplaneof symmetry.It can bes_enthat resultsareverysimil,_,except asmallwaveissuedfrom_ intersectionofd'_ogivea_tache.d shockwithl.hccouplingftonder. Figure 3puts intOevidence the very '.vcakmlluence o4'the di[fer_n&tr*c_onb_.xlpyressureasndshowsarathegroodcomparisonofthccomputedrcsul_ withexperimcnud ones,The_nall diffetenc¢lbeAweenthecurvescome from _h¢intersection ofthepreviouswavewiththebody. Hermesshuulcconfiguration Two supersoniccomputations havebeenmadeforaMachnumbero4'2.5andincidencesof 0 and 10 degrees.The Math number contourson thebodyandin thesymmetry plane tre displayedon figur4e. comparisonof the lift with experimental dmah_sbccnfoundto be in verygoodagrccmcnLFigure5 showsdensitycontoursobtainedon Hcrrncsfurchodyfoean hypersonic{'loowfMach number12withoutinciden4:Teh.efluxesusedm thiscase_rethe Vim Leer.Vinokur.Mo_agn40aes. RSF N" 23/i123 AY Page 22 Ho_u'ans'_crsjcetc',k:ulatJon Thissimulutiondealswith theinter_K:do_occuringbe_n a_t en_ripng slTJightupfrom a t'_t pl:,teinto :,flow paralleltothis one [18] (seefilure 6 for theinitial _crodyncmic coc_itions). Ina peocucalsituationtheho__t Mrsaspecificheatr_o differenftromthe o_dlow. This canbesimulatednu_ly by considednl nonR.._Cdvemixtures of two speciesflOWS.An impor_n( expertmenud fe_ure of _es¢ flows is the exis..t.e.nce of a subsonic_'_ thatcould notbe _ on _ initia/_ _ Soinor_r tocatxm_this mbsOnic pocket a n_fineddomainhas beenadded_ itsmpposcd ioc_ion (_ the frame tik_e '7_mdthe compumdorudgridsliirum $). This dom_n Ms beeninitialized _th the solutioonbtainedinIJ".coanmgridandthenthecakuladonhasbeenachievodonlyonthe Rf'mcddomain(weak_ouplini0F.illUt9edx_vsd_ concenu'aJodnismbutionofthehot,let ind_en_fineadreaforthetwomcshe¢Ot_cansintehes_onl influencoefd_eIPid rtfmernent onthe_ shapeFigu_10showstl_Mach numb_ disuibutk_in6_e_owficld. Clearly mbso¢Ikpocket iSnicely C_lXUmdms_ _fmod _ (minimum_ numberof0.67). CONCLUSION A 3D multidomain Eulescode hasbee_developed, itsvery modularcodini_allows the implementationofvariousnumericalvm'ixncosfVan Lce_MUSCL schemeanda large v'uicty ofboundary conditions. The exm_sion to differensttateequations or muldspeclcs flowshasbeenshown tobe s:.,'Cillhd'oclwuaradb,ilittyohandleunpatchcdgridseases corts_dcr_btlhyemultiblock iriddin_,andpermitstomak_Rfinemcnu whereverwanzd. The codeismonitoredbyscommand inccrpR_rwhich possessesthenecessaryflexibilittoy tumdIesupersoniacndhypersoniccornpuu_ortg$roundcomplexshapc.s. REFERENCES 1, Jacquo_te, O.P. Generation, Optimization, and Adaptation of Multiblock Grids around Complex Configurltions, Proceedingsof AGARD 64_hFDP. Loen, 1989. 2. Ranoux. G.. Lordon. J.. Diet. J. Geom_uie et Maillaee de Confi;ur_tions Complexes pour les Calculs A_rodynamiques, Procecdin;s 0f AGARD 64th FDP, Locn, 1989. 3. Borrel, M., Montagnd,].L., Diet J., Guillen, Ph., Lordon, J. Upwind Scheme for Supersonic Flows around Tactical Missile, La Recherche A_rospauale. 1988-2. 4. Vuillot,A.M. A Multi.Domaln3D EulerSolvesforFlows inTurbomachines, Proceedings of the 9th ISABE Symposium, Athens, 1989. (to be published). 5. Roe,P.L. Some Contributiontso_ Model[inlolfDiscontinuousflows,Lectun_ inAppliedMathematicsv,ol.22,1985. 6. Van Leer.B. A. Second Order Sequel to Godunov Method, Journalof Computational Physics, vol. 23 pp.2"/6-299. 19T7, 7. Van Leer, B. lI Monotony and Conservation Combined in a Second Order Scheme.Journal ofComputationalPhysics,sol. 14, pp.361.370,1974. 8. Van Leer,B. FluxVecto¢Splitdnlof d_eEulu Equations.lcas¢Repor_82-30. 1982. 9. Roe. P.L. Approximate Ricmann Solvers. Pu_meter vectors, and Difference Schemes. Journal of Computational Physics. Vol. 43 pp. 357.372. 1982. I0. Osher,S.,Solomon F.,Upwind DifferenceSchemes forHypcrbollcSystemsof ConservationLaws, M_thematicsof Computation,Vol.38158 pp. 339-374, 1982. lI. Abgr,_llR.. G_n_ralisatiodnu Sch_rnade Roe pourleCalculd'Ecoulementsde M_lungcs dc Gaz JlConcentrationsVariables,La Recherche A_rospatiale. 1988-6. RSF N" 23/1123 AY Page 29 12. Abgrall. R.. Mo_c_gn_. J.L. G_n_raZisationdu Schema cl'Osncr pour ie Calcui d'Ecoulcmenc5 dc M_iam|es de Gaz k Concentrations Variabtcs et dc Gaz R6cls, To bepublish_l inLaP.,cche_h¢ Ai_ospadal©, 1989. 13. Montagn_. J.L,, Ye¢, H.C.. Vinokur. M, Comparative Study of High Resolution Shock Capturin| Scheraes for , Real Gas, Proceedings of ',h ?th GaminConl'cnmc_ onN_ M_'xx_ inFluidMechanics.1987. 14. Yc¢. H.C., Harten, A. Implicit TVD Schemes for Hyperbolic Conservation Laws inCurviUnearCooaJlnau_AIAA 85-153. I$. Chakravm,xhy. S.R.. Hi|h Re.solution Upwind Formulations for the Navier- Sa_JlccEsquaLio¢_VKI Lacuw¢19_._2. 16. Viviand. H.. Veuillot, |.P. IMd_ Pscu_lo Instationnaires pour le Calcul d'Ecoulcmcnts Transsonlques, Publication ONERA 19"/8.4 (English Tnmsl.at_onESA TI"561). 17. Lan4rum, EJ. Wind Tunnel Pressure Dam at MJch Number, from 1.63m 4.63 for • Series of Bodies of Revolution m Angles of Attack from _ m 60 Degrees, Nasa Tcchnic',dMcmocandum,LangleyP-,e,_ca_hCcnr_r,1977. 18. Dormicux. M., Mahd, C. C•Iculs Tridimensionnels de I'[nteraction d'un Jet Lateral avcc un E¢ou_ement Supersonique Externe, AGARD-CP n'43-/, L_.(1988). RSF N" 23/1123 AY Page 24 a)Mono4omai. l_id. b)Continuoustwo-4omain ip'ici. c)Discontinuous two-domain ip'id. Filp.tre1. Computation lp'lds ofLheogtve.cvltnclcr.fl:treconfi_tu"_tion.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.