ebook img

Modeling optical and UV polarization of AGNs I. Imprints of individual scattering regions PDF

0.39 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling optical and UV polarization of AGNs I. Imprints of individual scattering regions

Astronomy&Astrophysicsmanuscriptno.3555pol (cid:13)c ESO2008 February5,2008 Modeling optical and UV polarization of AGNs I. Imprints of individual scattering regions Rene´ W.Goosmann1,2 andC.MartinGaskell3 1 AstronomicalInstituteoftheAcademyofSciences,BocˇniII1401,14131Prague,CzechRepublic e-mail:[email protected] 2 ObservatoiredeParis-Meudon,5placeJulesJanssen,92190Meudon,France 7 3 DepartmentofPhysics&Astronomy,UniversityofNebraska,Lincoln,NE68588-0111,USA 0 e-mail:[email protected] 0 2 ReceivedJune2005;acceptedDecember2006 n a ABSTRACT J Context.SpectropolarimetryofAGNsisapowerfultoolforstudyingthestructureandkinematicsoftheinnerregionsofquasars. 6 Aims.WewishtoinvestigatetheeffectsofvariousAGNscatteringregiongeometriesonthepolarizedflux. Methods.Weintroduceanew,publiclyavailableMonteCarloradiativetransfercode,S,whichmodelspolarizationinducedby 3 scatteringofffreeelectronsanddustgrains.WemodelavarietyofregionsinAGNs. v Results.Wefindthat theshape of thefunnel of thedustytorushasasignificant impact onthepolarizationefficiency. Acompact 2 toruswithasteepinnersurfacescattersmorelighttowardtype-2viewinganglesthanalargetorusofthesamehalf-openingangle, 7 θ .For θ < 53◦,thescattered light ispolarized perpendicularly tothesymmetryaxis, whilst for θ > 60◦ itispolarizedparallel 0 0 0 0 to the symmetry axis. In between these intervals the orientation of the polarization depends on the viewing angle. The degree of 7 polarizationrangesbetween0%and20%andiswavelengthindependentforalargerangeofθ .Observedwavelength-independent 0 0 opticalandnear-UVpolarizationthusdoesnotnecessarilyimplyelectronscattering.Spectropolarimetryatrest-framewavelengths 5 lessthan2500 Åmaydistinguishbetweendust andelectronscatteringbutisnotconclusiveinallcases.Forpolar dust,scattering 0 spectraarereddenedfortype-1viewingangles,andmadebluerfortype-2viewingangles.Polarelectron-scatteringconesarevery / h efficientpolarizersattype-2viewingangles,whilstthepolarizedfluxofthetorusisweak. p Conclusions.WepredictthatthenetpolarizationofSeyfert-2galaxiesdecreaseswithluminosity,andconcludethatthedegreeof - polarization should be correlated with the relative strength of the thermal IR flux. We find that a flattened, equatorial, electron- o scattering disk, of relatively low optical depth, reproduces type-1 polarization. This is insensitive to the exact geometry, but the r observedpolarizationrequiresalimitedrangeofopticaldepth. t s a Keywords.Galaxies:active–Polarization–Radiativetransfer–Scattering–Dust : v i X 1. Introduction entation effects (Lawrence & Elvis 1982; De Zotti & Gaskell r 1985). Since then, the dusty-torusmodel has become the stan- a One of the foremost problems in AGN research is that the in- dard unified model (see Antonucci 1993) dividing AGNs into nermostregionsofAGNscannotberesolvedintheopticaland twosub-types:“type-1”AGNswhichareseenclosetoface-on, UVwithcurrenttechnology.However,thelightofAGNsispo- and“type-2”AGNswhichare seen close toedge-on.Intype-1 larizedoverabroadwavelengthrange,andthisallowsustoput AGNs the central energysource and its surroundings(e.g., the importantconstraintsonthegeometryoftheemittingandscat- BLR) can be seen, whilst in type-2 AGNs the torus blocksour tering regions. Spectropolarimetric observations giving the de- direct view of these inner regions. While this obscuration and tailedwavelengthdependenceofthepolarizedfluxgivefurther the IR emission from the torus are the most obviouseffects of cluestothenatureofthepolarizingmechanism. the torus, scattering from the dust will add polarized flux. The OurinferencesoftheinnermoststructuresofAGNshaveso polarizationspectrumofanopticallythickdustytorushasbeen farbeenobtainedindirectly.Rowan-Robinson(1977)suggested the subject of several modeling projects (Kartje 1995, Wolf & thatAGNsaresurroundedbyadustytorusandinthesamepaper Henning1999,Watanabeetal.2003). he gives a suggestion by M. V. Penston that Seyfert2 galaxies areseenclosetoedge-onso thattheactivenucleusisobscured WhenDibai&Shakhovskoy(1966)andWalker(1966)dis- by the torus. Support for this picture came from the important covered optical polarization of AGNs, it was initially taken to discoveryby Keel (1980) that Seyfert1 galaxies(active galax- be evidenceofopticalsynchrotronemission,since synchrotron ies showing a broad-line region; BLR) are preferentially seen radiation has a high intrinsic polarization. However, Angel et face-on.Keel (1980) also investigatedabsorptioneffects inside al.(1976)foundtheBalmerlinesinNGC1068tobepolarized thehostgalaxiesandemphasizedtheneedofadditionalnuclear similarlytothecontinuum,thusimplyingthatscatteringwasre- absorption in Seyfert galaxies with respect to normal spirals. sponsible for the polarization of both the lines and continuum. Keel’sworkledtofurtherconfirmationoftheimportanceofori- The difference they found in polarization between the narrow- lineregion(NLR)andBLRplacesthescatteringregionoutside Sendoffprintrequeststo:Rene´W.Goosmann theBLR,butinsidetheNLR 2 Goosmann&Gaskell:ModelingAGNPolarization When light is scattered, the angle of polarization depends wedescribeS,anewgeneral-purpose,publicly-available,1 onthedirectionofthelastscattering,sooneexpectstheangleof MonteCarlocodeformodelingwavelength-dependentpolariza- polarizationtoberelatedtothestructureoftheAGN.Stockman, tioninawidevarietyofscenarios,andwepresentsomeresults Angel,&Miley(1979)madetheseminaldiscoverythatforlow- ofourstudyofAGNpolarization. polarization,highopticalluminosity,radio-loudAGNs,the op- InthispaperweconfineourselvestousingSforcalcu- tical polarization position angles tend to align parallel to the latingthepolarizationimprintsofbasicconstituentsoftheuni- large-scale radio structure. Although they interpreted this as a fiedscheme.Wecomputethepolarizationspectrumofdustytori consequence of optical synchrotron emission, they also sug- with various geometries and opening angles, and we consider gestedthatpolarizationfromanoptically-thin,non-spherically- scattering in polar conesand electron disks. We investigatethe symmetricscatteringregionnearthesourceofopticalradiation effectsofgeometricalshapeandopticaldepthofgivenregions. wasanotherpossibility. Noneofourmodelsareintendedtoreproduceobservationalpo- larimetricdataforanyspecificobject.Rather,wewanttoinves- Antonucci(1982)pointedoutthatwhilstmanyradiogalax- tigategeneralconstraintsonthescatteringregionsandthegeom- ies showed a similar parallel alignmentof the polarizationand etryofAGNs.Wediscussconsequencesfortheobservedpolar- radioaxes,therewas,unexpectedly,apopulationshowingaper- izationdichotomybetweentype-1andtype-2objects.Weleave pendicularrelationship.Itwas subsequentlyshown(Antonucci asidethequestionofinteractionsbetweendifferenttypesofscat- 1983)thatrelatively-radio-quietSeyfertgalaxiesshowasimilar teringregionsforpaperII(Goosmann&Gaskell,inpreparation) dichotomybetweenthepredominantly,butnotexclusively,par- wherewealsoconductmoredetailedmodelingofAGNsinthe allel polarizationin face-ontype-1 Seyfertsand the perpendic- unifiedscheme. ular polarizationof type-2 Seyferts(see Antonucci1993, 2002 The present paper is organized as follows: in section 2 we forreviews).Thesediscoveriesmadeasynchrotronoriginofthe summarize modeling of optical and UV polarization of AGN polarizationmuchlesslikely. and the main results obtained previously. Section 3 describes Polarization perpendicular to the axis of symmetry is eas- our code S. In section 4 we present modeling results for ily producedby scattering off material close to the axis. There equatorial,toroidaldust distributions.Section 5 is dedicated to is good observational evidence for the existence of ionization electronanddustscattering in polardouble-cones.In section 6 cones along the polar axis in numerousobjects (see Kinney et we investigate the polarization signature of equatorial regions al.1991andreferencetherein).Polarscatteringhasbeenpartic- forelectronscattering.Ourresultsarediscussedinsection7and ularlywellstudiedintheSeyfert-1galaxyNGC1068.Antonucci wegivesomeconclusionsinsection8. &Miller(1985)madethekeydiscoverythatthepolarized-flux spectrum can offer a periscope view of type-2 AGNs because much of the polarizedflux originatesinside the torus. Detailed 2. Previouscodesandmodeling HST polarimetry has revealed the polarization structure of the Inthissection,webrieflysummarizesomerecentAGNpolariza- ionizationcones(seeCapettietal.1995a,b;Kishimoto1999). tionmodelingcodeswhichwewillcompareourSmodel- Thedetectionofahiddenbroad-lineregioninNGC1068by ingwith. Antonucci & Miller (1985) was of great importance for AGN Young et al. (1995, 1996), Packham (1997), and Young research since it provided strong support for the unified theo- (2000) developed an analytical radiative transfer model, the ries of AGN activity. More hidden type-1 nuclei have subse- Generic Scattering Model (GSM), for polarization modeling. quently been found by analysis of their polarized-flux spectra ThemodelisbasedontheunifiedAGNmodel.Extendedemis- (seee.g.,Miller&Goodrich,1990;Tran,Miller,&Kay,1992; sionregionscanbedefined,andscatteringprocessesaswellas Hines & Wills, 1993; Kay, 1994; Heisler, Lumsden, & Bailey, dichroicabsorptionareconsidered.Themodeledgeometriesin- 1997; Tran, 2001; Smith et al., 2004). Similar work on the ra- clude toroidal, disk-like, and conical regions of dust and free dio galaxy 3C 321 was done by Young et al. (1996), and Tran electrons.Forscatteringmaterialinmotion,Dopplereffectsare et al. (1999) could identify an active nucleus inside an ultra- included.Themodelisfairlyeffectiveinreproducingspectropo- luminous infra-red galaxy using spectropolarimetry. Recently, larimetric data of Seyfert galaxies (see, for example, Young et hiddentype-1nucleihavealsobeenfoundinfivetype-2quasar al. 1999forMrk509).Inparticular,it reproducesvariationsof candidates(Zakamskaetal.2005). thepolarizationacrossbroademissionlines(Smithetal.2005). Themodelissemi-analyticalandthereforedoesnottakemulti- The new generation of large telescopes is delivering spec- plescatteringintoaccount. tropolarimetryofemissionlineprofileswithgoodvelocityreso- Wolf&Henning(1999)presentaMonte-Carlocodeusedto lution (see, for example, the spectropolarimetry of the Seyfert computethe polarizationobtainedby scattering inside axisym- 1.5 galaxy NGC 4151 presented by Martel 1998, and the at- metric regions. They consider dust and electron scattering for lasofspectropolarimetryofSeyfertgalaxiespresentedbySmith polar double-conesand equatorialtori. In the Monte-Carlo ap- etal.2002). Examinationofvelocity-dependentpolarizationof proach two or more of such componentscan be combined and emissionlinespromisestorevealvaluableinformationaboutthe theresultingpolarizationspectraaremodeledforvariousincli- geometryoftheBLR(Smithetal. 2005).Similarly,spectropo- nations of the system. Aside from spectropolarimetric model- larimetryofquasarabsorptionlineshelpsconstrainthegeometry ing, the code by Wolf & Henning (1999) can also producepo- ofbroadabsorptionlineQSOs(Goodrich&Miller1995,Cohen larizationimages,whichare providedforvarioustorusgeome- etal.1995,Hines&Wills1995,Ogleetal.1999). tries.Animportantelementinthiscodeisthatmultiplescatter- In order to understandthese manyfacets of AGN polariza- ing,which becomesimportantforopticaldepths> 0.1,is con- tion, and their implications for the underlying geometry, theo- sidered accurately by including the dependence of the scatter- reticalmodelingisnecessary.Analyticalapproachestoradiative ingangleandthepolarizationof ascatteredphotononitsinci- transferthathavebeencarriedoutsofararegenerallylimitedto dentStokes vector. For dustscattering, two differentgrain size theconsiderationofsingle-scatteringmodels.Computersimula- tionsareneededtoinvestigatemultiple-scatterings.Inthispaper 1 http://www.stokes-program.info/ Goosmann&Gaskell:ModelingAGNPolarization 3 distributionswereexamined:oneparameterizationrepresenting Galacticdust,andtheotherfavoringlargergrains. Kartje(1995)alsodevelopedaMonteCarloCodeandinves- observer z tigated quasar schemes with either a torusgeometryor conical stratifiedwindsalongthepolaraxis.Inadditiontopolarization last scattering event byscattering,healsoconsiderspolarizationbydichroicextinc- tion due to magnetically-aligneddust grains. For a simple uni- fiedtorusmodelhefindsthatthedominantparameterofthepo- Θ larization, P,isthetorushalf-openingangle:fortype-2objects creation of one can find significant polarization (up to 30%) with a posi- a new photon φ tion angle directed perpendicular to the axis of symmetry; for type-1objectsPisnegligible.Kartjeobtainsanimportantresult y when he investigatesconical stratified-wind regionscontaining free electrons closer to the central source and dust farther out: emission region theamountofpolarizationrangesbetween0%and13%,match- ing observedvalues, and the direction of the E-vectordepends scattering region on the viewing angle in a manner that agrees with the above- scattering events mentioned type-1/type-2 dichotomy. The polarization percent- age can be increased if there is magnetic alignment of dust x grains, but the general dependence of P on the viewing angle Fig.1.Aphotonworkingitswaythroughthemodelspace. seemstobeageometricaleffect. Another Monte-Carlo polarization code is presented by Watanabe et al. (2003). It is applied to modeling of optical region through various scattering processes until they become andnear-infraredspectropolarimetricdataofthetype-2Seyfert absorbed or manage to escape from the model region (Fig. 1). galaxiesMrk463E,Mrk1210,NGC1068,andNGC4388.The The polarization properties of the model photons are given by codecontainselectronanddustscatteringroutinesquitesimilar theirstoredStokesvectors. to thoseusedbyWolf & Henning(1999).Itconsidersmultiple Photonsarecreatedinsidethesourceregions,whichcanbe scatteringanddichroicabsorptionindustytori,spheresaswell realizedbydifferentgeometries.Thecontinuumradiationisnor- aselectronanddustscatteringindouble-conicalregions.Theab- mallysimplydefinedbytheindexαofanF ∝ ν−α powerlaw. ν sorptionandscatteringpropertiesofthedustarecarefullycalcu- TheStokesvectorsofthephotonsareinitiallyset tothevalues latedbyMietheory.Watanabeetal.(2003)examinewavelength- ofcompletelyunpolarizedlight. dependentpolarizationpropertiesfordifferentgeometriesovera Various scattering regions can be arranged around the broad-wavelengthrangeandgiveconstrainsaboutpossiblescat- sources. The programofferse.g. toroidal,cylindrical,spherical teringcomponentswithin theobjectstheyobserved.Theycon- or conical shapes. These regions can be filled with free elec- clude that a combination of dust and electron scattering in po- tronsordustconsistingof“astronomicalsilicate” andgraphite. lar regions can reproducethe optical polarization propertiesof A photon works its way through the model region and gener- Mrk463EandMrk1210.TheslopeofopticalpolarizationNGC allyundergoesseveralscatterings.Theemissiondirections,path 1068isalmostflatfavoringelectronscatteringasthe dominant lengthsbetweenscatteringevents,andthescatteringanglesare polarizing process. For the near-infrared range polarization of computedby MonteCarlo routinesbased onclassical intensity theseobjectscanbemodeledbydichroicabsorptionofaligned distributions. During each scattering event the Stokes vector is dust grains in a torus. However, scattering off Galactic dust in changedby multiplicationwith the correspondingMueller ma- atoruscannotsimultaneouslyreproducethenear-infraredpolar- trix.Fordustscattering,absorptionisimportant,andalargefrac- izationandthetotalflux.Watanabeetal. (2003) hencesuggest tionofthephotonsneverreachesthevirtualobserver.Therele- thatthegrainsizecompositionofAGNsmightbedifferentfrom vantcross sectionsand matrix elementsfor dust scattering and ourGalaxy. absorptionare computedon the basis of Mie theory applied to This list of previous polarization modeling is not exhaus- sizedistributionsofsphericalgraphiteandsilicategrains. tive. For example, Blaes & Agol 1996 and Agol & Blaes If a photon escapes from the model region, it is registered 1996 have presented modeling of the wavelength-dependent by a web of virtual detectors arranged in a spherical geometry polarization signature of accretion disks at the Lyman limit, aroundthesource.Thefluxandpolarizationinformationofeach and Kishimoto (1996) modeled polarization due to electron- detector is obtained by adding up the Stokes parameters of all scattering off clumpy media in polar regions of AGN. Also, a detectedphotons.Ifthemodeliscompletelyaxiallysymmetric new Monte-Carlo model, which includes polarization transfer these can be azimuthally integrated and, if there is plane sym- for the continuum and for broad quasar absorption lines, was metry,thetopandbottomhalvesarecombined.Theobjectcan recently presented by Wang, Wang, & Wang (2006). We have be analyzed in total flux, in polarized flux, percentage of po- restrictedthisbriefreviewtorecentmodelingofpolarizationby larization, and the position angle at each viewing angle. The dustandelectronscattering,sincethisisourprimaryconcernin light travel time of each photon is also recorded, so it is pos- thepresentpaper. sible to model time-dependent polarization (Gaskell, Shoji, & Goosmann,inpreparation). 3. Stokes–anoverview 3.1.MonteCarlomethod,photoninitialization,andsampling ThecomputerprogramSperformssimulationsofradiative thefreepathlength transfer,including the treatmentof polarization,for AGNs and related objects. The code is based on the Monte Carlo method Using the Monte Carlo methodit is possible to generatea ran- andfollowssinglephotonsfromtheircreationinsidethesource domeventxaccordingtoagivenprobabilitydensitydistribution 4 Goosmann&Gaskell:ModelingAGNPolarization p(x).Let p(x)be definedon the interval[0,x ]. We canthen scatteringoffasphericalparticle,thefollowingrelationbetween max constructtheprobabilitydistributionfunctionP(x)andrelateit theincomingandscatteredelectricfieldsholds: toarandomnumber,r,between0and1asfollows: E S (θ) 0 E 1 x k,s = 2 k,i . (6) r= P(x)= p(x′)dx′. (1) E⊥,s ! 0 S1(θ)! E⊥,i! C Z 0 The scattering matrix elements, S (θ) and S (θ), are inde- The constant C is a normalization constant resulting from 1 2 pendentoftheazimuthalangleφ.IncaseofThomsonscattering, integrationoverthewholedefinitioninterval[0,x ].Giventhe max thereabsolutevaluesobeytosimpleanalyticexpressions: randomnumber,thecorrespondingvalueof xforasingleevent isobtainedbyinvertingequation(1).Agooddescriptionofthe MonteCarlomethodcanbefoundinCashwell&Everett(1959). |S (θ)|2 = 1, (7) In the following, we describe the main routines of S and 1 |S (θ)|2 = cos2θ. (8) denote all random numbers computed from equation (1) by r, 2 i withi=1,2,3.... For dust scattering, the albedo and the matrix elements of To generate a model photon, its initial parameters of po- a standard dust grain are calculated from Mie theory (see sec- sition, direction of flight, and wavelength all have to be set. tion 3.3). The albedo at the photon wavelength is compared to Different geometries for the continuum region, broad-line re- gion,andnarrow-lineregionareavailableinS.Assuming a random number,r5, in order to decide whether the photon is absorbedorscattered.Ifthephotonisabsorbeditislost,andthe a constant density of the emitting material, a random position cyclestartsoverwiththegenerationofanewphoton. for the new photonis sampled.The flight directionis givenby Thepolarizationvectorofeachphotonliesperpendicularto two angles, θ and φ, defined with respect to a standard polar itstrajectory,insidetheso-calledpolarizationplane,anddenotes coordinate system. Assuming isotropic emission, the sampling thepreferreddirectionoftheE-vector.Itisdefinedwithrespect equationsfortheanglesareasfollows: toaco-movingcoordinatesystem.Thepolarizationinformation ofeachphotoniscodedbyfourStokesparametersI,Q,U,and θ = arccos(1−2r ), (2) V,representingthe4-dimensionalStokesvector.Weassumethat 1 newlycreatedphotonscomingfromthesourceareunpolarized. φ = 2πr . (3) 2 Hence,theirStokesvectorshavethesimpleform: The wavelength of the photon is sampled according to the I 1 intensityspectrumoverarange[λ ,λ ].Thisleadsto: min max Q 0  = . (9) λ=Heλhrλemαm,iniαn(cid:16)+λλdmmearinxn3(cid:17)o(cid:16)r3tλe,αmsaxth−eλuαmsuina(cid:17)liα1po,wffooerrrααlaw=,i11n.,dex of the intens(i4ty) uannUVgdlWeergiφtoh,eeos00acacchudrosscuabatrlteoeurrinondtgatteihvoeenn:cttu,hrterheefincrtsoflt-imrgohotavttiidnoignre,ccobtoiyorntdhienoafatztehimseyusptthehoma-l spectrum. ton. It rotates the E-vector inside the polarization plane to the Ifweignorescatteringsbackintothebeam,theintensityof position of the new scattering plane (see Fig. 2). Physically, it aphotonbeamtraversingaslabofscatteringmaterialwithpar- doesnotaffectthepolarizationstate,althoughtheStokesvector ticlenumberdensityNandcross-sectionσwilldropbyafactor undergoesthefollowingcoordinatetransformation. of eNσl, with l being the distance traveled inside the scattering region.Fromthis,onecanderivethesamplingfunctionofl: I∗ 1 0 0 0 Iin Q∗ 0 cos2φ sin2φ 0 Qin l= TN1hσelfna(c1to−rr41).is the mean free path length. Depending(o5n) UV∗∗=00 −si0n2φ cos02φ 01UViinn. (10) Nσ The second rotation occurs in the scattering plane by the thescatteringmaterial,theprogramuseseitheradustextinction scatteringangleθ.ThechangeoftheStokesvectorisdetermined cross-sectionσ computedfromMietheoryor,incaseofelec- ext bytheMuellermatrix,whichforscatteringoffasphericalparti- tronscattering,theThomsoncrosssectionσ . ES clehastheform: Iout S S 0 0 I∗ 3.2.Polarizationformalism,scattering,andphotondetection 11 12 Qout 1 S S 0 0 Q∗ Taonuhdsewtphooelriarkrtidrzaeanstsicofronibrmepdraotepi.oegnr.tidienusrFionifsgcthhsceear,tptHheroeitnnognnisenvgse,anm&tspYlreeodlrykineon(S1p9r9ev4i)-. UVoouutt= k2d2  0012 0022 −SS3334 SS3444UV∗∗. (11) Thetheoreticalbasisfortheformalismpresentedinthissection The entries of the Mueller matrix are obtained by simple canbefoundinBohren&Huffman(1983). relations from the elements of the scattering matrix, S (θ) and 1 If we considera photonbeingscattered off a sphericalpar- S (θ). 2 ticle(seeFig.2),theoutgoingelectromagneticwaveassociated The angle-dependent classical intensity distribution of a with the photon can be resolved into two components, E and scatteredelectromagneticwavemeasurestheprobabilityoffind- k E . These components refer to directions of the electric-field ingascatteredphotonatagivendirection.Suchprobabilityden- ⊥ vector parallel and perpendicular to the scattering plane. For sity distributions are derived from equation (6). An important Goosmann&Gaskell:ModelingAGNPolarization 5 3.3.Computationofdustproperties y z Mathis,Rumpl,&Nordsieck(1977,MRN)suggesteddustcom- Ex* positionstoreproduceextinctioncurvesobservedinourGalaxy. z φ’ x Eyout Exout Tbuhteioynaspsruompoerdtivoanrailoutostaysp,ewsiothf dausbteginrgainthsehagvrainingraadsiizuesdainsdtris- Exin an arbitrarypower-law index.Our parameterizationof the dust 180° − γ Θ Second turn by Θ propertiesfollowsthatofMRNandgivesagooddescriptionof i observedGalacticextinctioncurves.Theusercanchoosethear- y Ey* Ex* bitraryminimumandmaximumradiiofthegrain-sizedistribu- φ’ First turn byφbringingEx tion,itspowerlawindex,andtherelativeabundancesofgraphite into the new scattering plane and“astronomicalsilicate”. x Exin Eyin extinTchteiornescurlotsssfrsoecmtioMnsie, aslcbaetdteorsin,gantdheeolreym,ei.net.s, socfatthteerisncgatatenrd- ing matrix, are computed using the code given by Bohren & Huffman(1983). We importedcomplexdielectric functionsfor graphite and silicate measured by Draine & Lee (1984). For Fig.2. Geometry and denotations for a single scattering event. graphite,twodielectricfunctionshavetobeconsideredsincethe TheinsetshowsthefirstrotationoftheE-vectorbytheangleφ, opticalpropertiesfor lightpolarizedparalleland perpendicular theviewonthepolarizationplaneisalongthenegativez-axis. to the crystals axis differ from each other. The code therefore workswith the two differentgraphitetypes having abundances in a ratio of 1:2. It computes a weighted average for the dust aspectincludedinSisthatthescatteringdirectionissam- compositionand grain size distribution defined. The procedure pled dependingon the incident polarizationvector. The degree isdescribed,forexample,inWolf(2003).Thepropertiesofthe P and the position angle γ of the polarization before scatter- resulting“standarddustgrain”arethenusedbyalldust-related inigarecomputedfromtheiincidentStokesvectorandenterthe routinesofS. samplingequationsofθandφ=φ′+180◦−γ: We confine ourselves to using standard Galactic dust such i as is seen in the solar neighborhood,even though there is evi- dence that the tori of AGNs mighthave differentcompositions θ andgrainsizedistributions(seeCzernyetal.2004,Gaskelletal. P(θ) = N |S1(θ′)|2+|S2(θ′)|2 sin(θ′)dθ′, (12) 2004,andGaskell&Benker2006).FollowingWolf&Henning Z 0 (cid:16) (cid:17) 1999,weparameterizeGalacticdustbyamixtureof62.5%car- P (φ′) = 1 φ′− |S1(θ)|2−|S2(θ)|2P sin2φ′ . (13) bonaceous dust grains and 37.5% “astronomical silicate”. We θ 2π |S (θ)|2+|S (θ)|2 i 2 ! considergrainradii, a, from 0.005µm to 0.250µm with a dis- 1 2 tributionn(a) ∝ as with s = −3.5.The resultingcross-sections The number N is a normalizationconstant in orderto have andthealbedoareshowninFig.3asafunctionofwavelength. (12)rangefrom0to1forscatteringanglesbetween0◦and180◦. Thefigureshowsthatforthisparticulardustmodel,thealbedo Tosampleφandθ,therighthand-sidesoftheseequationshave isratherflatwithavalueof0.55–0.6overthewavelengthrange tobesetequaltorandomnumbersr ,r .Theequationsarethen considered.Forwavelengths.2500Åitfallsto0.4.Thecross- 6 7 solvedfortheangles. sectionsalldecreaseregularlywithwavelength,withtheexcep- Notethatthesamplingisindependentoftheincidentpolar- tionofthewell-knownhumparound2175Å. ization for θ but notfor φ. In severalMonte-Carlopolarization transfer codes describedin the literature, the incidentpolariza- 4. Simulationoftorusgeometries tion does not affect the sampling of the scattering angles. This does not present a problem if one considers unpolarized inci- Inthissectionweinvestigatehowmuchofthepolarizationprop- dent radiation and low optical depths. Also for very high op- ertiesoftype-1andtype-2AGNscanbeproducedbyauniform- tical depths, when multiple-scattering neutralizes the polariza- density torus alone. Kartje (1995) modeledthe polarizationin- tioninsidethescatteringregion,theincidentpolarizationcanbe ducedbyscatteringoffacylindricallyshapedtorus.Theirtorus neglected. However, results for intermediate optical depths are model was adopted from a fit to NGC 1068 given by Pier & sensitive to the sampling method and they should consider the Krolik (1992). This torus is geometrically rather compact and polarizationstateoftheincidentphoton. islocatedwithina radiusof1pcfromthecentralsource.Such Whenaphotonescapesfromthemodelregionitisrecorded a cylindrical torus is not necessarily physical, so we examine byoneofthevirtualdetectors.Itisthennecessarytorotatethe whether the results of Kartje can be confirmed with more gen- polarizationplanearoundtheflightdirectionuntilitmatchesthe eraltori,andweextendtherangeofparameterspaceexplored. referenceaxisofthedetector.TheStokesvectorsofallincoming photonscanfinallybeaddeduptothevaluesIˆ,Qˆ,Uˆ andVˆ.The 4.1.Curvedsurfacesversussharpedges netpolarizationpropertiesarederivedfrom: The dusty tori examined by Kartje (1995), Wolf & Henning (1999), Young (2000), and Watanabe et al. (2003) have rather Qˆ2+Uˆ2+Vˆ2 sharpedges,and,sincewefindthatpolarizationresultscande- P = , (14) p Iˆ pendstronglyongeometricaldetails,wehaveinvestigatedaless artificialtorusgeometrywith an ellipticalcross-section.To ex- 1 Uˆ γ = arctan . (15) aminetheinfluenceofsharpedgesofthecylindricaltorusonthe 2 Qˆ polarization,wedefineatoruswithsimilardimensions,andthe 6 Goosmann&Gaskell:ModelingAGNPolarization 1.0 0.9 0.8 0.2 0.7 o 0.6 d e 0.5 b al 0.4 0.3 P 0.2 0.1 0.1 0.0 6×10-12 2cm]5×10-12 0 on [4×10-12 secti3×10-12 oss-2×10-12 1 cr 1×10-12 0 1100--11 2000 4000 6000 8000 10000 λ [Angström] fFoirg.t3h.isCphaapraecrtearsisaticfupnrcotpioenrtioefsowfatvheelednugstthc.oTmoppo:sailtbioendoadvoapltueed. F / Fcent 10-2 Bottom: cross-sections for extinction (black, solid), scattering 1100--33 (red,dashed),andabsorption(blue,dotted). 10-4 2000 3000 4000 5000 6000 7000 8000 λ [Angstrom] Fig.5. Modeling a cylindrical torus with an elliptical cross- section and θ = 30◦ (see section 4.1). Top: polarization, P. 0 Bottom: the fraction, F/F , of the centralflux, F , seen at dif- ∗ ∗ ferentviewinginclinations,i.Legend:i = 87◦ (edge-on)(black crosses), i = 76◦ (orangetriangles with points down), i = 70◦ (intermediate) (maroon stars), i = 57◦ (purple triangles with points up), i = 41◦ (green diamonds), i = 32◦ (red squares), andi=18◦(face-on)(bluecircles). cosi because it givesequal flux per bin for an isotropic source located at the center of the model space if there is no scatter- ing.Ourfigureisquitesimilartothecorrespondingdiagramsin Fig.4. Geometry of the three torus models we consider: (1) Kartje‘spaper(seehisFig.5). the cylindricaltorus used by Kartje, (2) a compact elliptically- TheonlydifferencebetweenourresultsandthoseofKartje shapedtorus, and (3) an extendedellipticaltorus. All tori have is that we generally obtain slightly lower polarization degrees thesamehalf-openingangleΘ0 andaslightlydifferentwavelength-dependentslopeforthescat- tered flux. This can be explained by the fact that we calculate ourcross-sectionsfromMie theoryof a specific dustcomposi- same optical depth in the V band (τ ) ∼ 750 along the radius tionwhilstKartjeusedcross-sectionsgivenbyMezger,Mathis, V in the equatorial plane. Thus, practically no photon is able to &Panagia(1982). penetratethroughthetorusandonlyscatteringoffitssurfaceis Wealsoinvestigatedthepolarizationofacompacttoruswith relevant.However,ourtorushasan ellipticalcross-section(see an elliptical cross-section for changing θ0. Again we obtained Fig.4)insteadoftherectangularcross-sectionusedbyKartje. similar results (not shown) to those for Kartje‘s cylindrically- Our results compare very well to those obtained by Kartje shaped tori. Thus, the differences in polarization between the (1995). In Fig. 5 we show polarization and flux (normalized ellipticalandcylindricaltoriarenegligible.Havingsharpedges to the flux of the centralsource)versuswavelengthat different in the cylindrical model rather than the more realistic rounded viewingdirections.Thetorusconsideredhasahalf-openingan- edgesoftheellipticaltorusdoesnotintroducespuriouseffects. gleofθ = 30◦.Thepositivevaluesof Pdenotethatthepolar- 0 ization vector is orientedperpendicularlyto the symmetry axis 4.2.Theeffectoftheshapeoftheinneredgeofthetorus (type-2polarization).In our simulationsthe torus is filled with standardGalacticdust,parameterizedasdescribedattheendof A real torus is undoubtedlythicker than the geometricallythin section3.Wesampleatotalof108photonsandrecordspectraat cylindrical torus of Kartje. Direct imaging of NGC 4261 (= 10differentviewinganglesscaledincosi,whereiismeasured 3C 270) shows that the dusty torus in that AGN extends out fromtheaxisofthetorus.We showourresultsasafunctionof to 230 pc (Ferrarese, Ford, & Jaffe 1996). A similar dust lane Goosmann&Gaskell:ModelingAGNPolarization 7 acrossthenucleusofM51(=NGC5194)extendsby∼100pc (Fordetal.1992).Theinnerradiioftoriareobtainedbyinfra- red reverberationmapping of the hot dust and are in the range oftenstohundredsoflight-daysforSeyfertgalaxies(seeGlass 0.2 2004andSuganumaetal.2006). Theouterregionsoftorihaveconsiderableopticaldepth,so theirpreciseshapeisunimportant,sincenophotonsescapepar- alleltotheequatorialplaneofthetorus.Theshapeoftheinner P 0.1 regionfacingthecentralenergysourceismorerelevant.Current torus models commonly consider inner surfaces that are con- vex towards the central source. We thus model optically-thick, uniform-density tori with elliptical cross sections, an inner ra- dius of 0.25 pc, and an outer radius of 100 pc. We compare 0.0 these results to the modelingof a more compacttoruswith the same half-opening angle, θ = 30◦, as in section 4.1. We de- 0 termine the dust density by fixing τ at ∼ 750. Variability ob- 1 V servationsimplythatthe size ofthe opticalandUV-continuum sourceinSeyfertgalaxiesislessthanafewlight-days,asisalso 1100--11 expectedfromsimpleblack-bodyemissivityarguments.Hence, npwiohtieennts-ilcziokeneoseifdmtehirseisnicgoonsncrtaeintgtueiourinmn.gNsoooffutertchteheaittnotrhouiussr,cwmoenoscdiadenlerananetidgolneacsrsteutmhmeaeifinas- F / Fcent 10-2 validforobjectswithhigherluminositiesbecauseboththesize 1100--33 of the centralemission regionand the inner radiusof the torus scalewithluminosity. 10-4 The resulting spectra at different inclinations are shown in Fig.6.Iftheviewingangle,i,islessthanθ0(thuscorresponding 2000 3000 4000 5000 6000 7000 8000 toa type-1object),we onlyobservearegulartype-1spectrum. λ [Angstroem] Wefindthatthereisnosignificantpolarizationinthiscase.Ifwe look at a type-2 objectat a higher inclination angle, only scat- Fig.6.Modelingalargetoruswithanellipticalcross-sectionand tered (and hencepolarized)lightis detected.This is analogous θ = 30◦ (see section 4.2). Top: polarization, P. Bottom: the 0 to the results obtained for the compact torus shown in Fig. 5. fraction,F/F ,ofthecentralflux, F ,seenatdifferentviewing ∗ ∗ Theoverallshapeofthepolarizationspectrumforbothsizesof inclinations, i. Legend: i = 70◦ (intermediate) (maroon stars), thetorusisrathersimilaraswell.Withincreasingviewingangle i = 63◦ (pinktriangleswithpointstotheright),i = 57◦ (purple thelevelofthepolarizationspectrumrises,reachesamaximum, triangleswithpointsup),i=49◦(browntriangleswithpointsto anddecreasesagaintowardsedge-onlinesofsight.Theshapeof the left), i = 41◦ (green diamonds),i = 32◦ (red squares), and the P-spectrumdoesnotchangesignificantlybetweendifferent i=18◦(face-on)(bluecircles) type-2inclinations. Therearedifferencesbetweenourresultsofmodelingalarge torus (case 3 in Fig. 4) with half-openingangle θ = 30◦, and 0 the analogous compact torus (case 2 in Fig. 4) with identical half-openinganglebutsmallerdimensions.Astrikingdifference occurs in the angular flux distribution: the large torus scatters considerably fewer photons towards an observer at intermedi- ateviewinganglesbecausetheyhittheouterpartsofit(seethe illustration in Fig. 7). Towards edge-on viewing directions the probability of seeing scattered photons is much lower than for thesmalltorus.Thespectralslopeofthescatteredradiationalso differsbetweenthetwotori.Whilethespectrumisflatinthecase of a compacttorusit rises towardsthe blue for the large torus. This can be explained by the increasing tendency of forward- Fig.7.Comparisonofthecompactandtheextendedtoruswith scatteringatshorterwavelengths.Photonsescapingathigherin- θ0 =30◦intheV-band. clinationshavetoundergoback-scattering;thisismorelikelyto happenatlongerwavelengths. There are also differences in the polarization signatures of sufficientstatistics.Ontheotherhand,itclearlyfollowsfromour both tori. Although the overallspectral dependenceof P is the computationsthatthespectralfluxatanglesi > 76◦ isreduced same, the level of P is changed. The strongest changes are at by a factor of almost ∼ 2×107 with respect to the flux of the higher inclinations when the central source is becoming ob- source.Therefore,thepolarizedfluxattheseanglesisverylow. scured by the torus. As with the total flux (see above), for the WeshowthedifferencesinV-bandtotalfluxandpolarization largertorus,Pissignificantlylower(comparethecaseofi=70◦ betweenalargeandasmalltorusinFig.8.Thetoppanelshows betweentheupperpanelsoffFig.5andFig.6).Foralargetorus, thepolarizationasafunctionoftheviewingangle,andthebot- our current models sampling several 109 photons do not con- tompanelthefractionofthelightreachingtheobserver.Aswas strainthepolarizationwellatveryhighinclinations.Thenumber shown above,the differencesbetween the two torusshapes are ofphotonsscatteredintothesedirectionsistoosmalltoallowfor mostimportantat higherinclinations.At i ∼ 70◦ the degreeof 8 Goosmann&Gaskell:ModelingAGNPolarization 0,15 0.2 0,1 P 0,05 0.1 P 0 0.0 -0,05 -0,1 1 1100--11 -0,15 2000 3000 4000 5000 6000 7000 8000 F / Fcent 10-2 λ [Angstrom] Fig.9. Polarization averaged over type-2 viewing angles (see 1100--33 section4.3).ApositivevalueofpolarizationdenotesanE-vector orientedperpendiculartothe torussymmetryaxis;fornegative 10-4 valuesthe E-vectoris alignedwith the projectedaxis. Legend: θ = 10◦ (blackdashedline),θ = 20◦ (solidredline),θ = 30◦ 0 0 0 40 45 50 55 60 65 70 (green dot-dashed line), θ = 45◦ (blue dots), θ = 50◦ (long 0 0 yellow dashes), θ = 60◦ (browndouble dots and dashes), and Inclination [deg] 0 θ =75◦(pinkdouble-dashesanddots). 0 Fig.8.Differencesbetweenlargeandsmalltoriwithanelliptical cross-sectionintheV-band(seesection4.2).Top:polarization, P, and bottom, the fraction, F/F , of the central flux, F , as a ∗ ∗ functionofviewinginclinations,i.Thedashedlinesdenotethe Varying the opening angle shows several important things. thin elliptical torus (case 2), the solid line the extended torus Forθ < 53◦ theabsolutevalueofthepolarizationdecreasesas 0 (case3) theopeningangleincreases(seeFig.9),aswasfoundbyKartje (1995)forcompacttori.Thepolarizationvectorisorientedper- pendicularlyto the axis for all viewing directions i > θ , as is 0 observed in type-2 AGN. For θ > 60◦, only parallel polariza- 0 polarizationreachesadifferenceof6%,andthefluxdiffersbya tionvectorscanbeseenatviewinganglesi>θ .Inthisrangeof 0 factorofalmost100. θ theabsolutedegreeofpolarizationincreaseswiththeopening 0 angle. The reasonfor the flip of the relative position angle can be 4.3.Theeffectofthetorushalf-openingangle explained by the scattering phase function, and by the geome- Kartje (1995)has shownthatthe half-openingangle,θ , of the try of the inner parts of the torus (Kartje 1995). For a distant 0 torusisanimportantparameterfortheobscurationandreflection observerlookingatthetorusalonganoff-axislineofsight,the properties.Whilemodelinglargetori,weexaminehalf-opening scattered radiationcomesfrom the inner surface walls. In part, angles ranging from 10◦ to 75◦. Variation of θ is realized by these consist of the inner torus wall facing the observer most 0 changing the vertical half-axis of the elliptical torus cross sec- directly, but they also consist of the two surfaces on the side. tion.Theothermodelparametersaredefinedasfortheprevious Duetothescatteringgeometry,thephotonsscatteredofftheside caseofθ =30◦insection4.2. wallsarepolarizedalongtheprojectedsymmetryaxis,whilstthe 0 photonscomingfromthefarwallareperpendicularlypolarized. The ratio of the solid angle that the far side of the visible in- 4.3.1. Toriwithnarroworwideopenings nersurfacesubtendstothesolidanglethatthevisibleinnerside wallssubtendchangeswiththehalf-openingangleofthetorus, Forlargetori,θ isadominantparameterforboththedegreeof 0 andsodoestheoverallpolarizationvector. polarizationandthepositionangle,γ.InFig.9weshowthepo- larizationofthescatteredradiationasafunctionofwavelength and for variousθ . Due to a similar overallshape of the wave- 0 4.3.2. Transitioncase:intermediatetorushalf-opening lengthdependenceofP,weaveragethepolarizationovertype-2 angles viewing angles, i, with i > θ . We thereby exclude the high- 0 est inclinations with an insufficient number of photons, where Forintermediateopeningangleswith53◦ < θ < 60◦ theorien- 0 the statistics of P are too poor.For viewing angleswith i < θ tation of the polarizationpositionangle seen at type-2viewing 0 (correspondingto type-1 objects seen face-on) the polarization anglesdependsontheexactinclination.Weillustratesuchacase isnegligible. inFig.10,wherewesetθ =57◦. 0 Goosmann&Gaskell:ModelingAGNPolarization 9 0.03 0.15 0.02 0.1 0.01 V-band Peff P 0 0.05 -0.01 -0.02 0 0 20 40 60 80 0 20 40 60 80 Half-opening angle Θ [deg] Half-opening angle Θ [deg] 0 0 Fig.10.Modelinganexpandedtorusatanintermediateopening Fig.11.Effective polarization, P (see section 4.3), fortype-2 eff angle of θ = 57◦. The graphshows the polarizationdegree in viewingpositionsasa functionofthe half-openingangle ofan 0 the visual band versus inclination angle i. A positive value of extendedtorus(case3). polarization denotes an E-vector oriented perpendicular to the torussymmetryaxis;fornegativevaluesthe E-vectorisaligned withtheprojectedaxis. θ outsidethisintervalthewavelength-dependenceofPisrather 0 lowanddoesnotexceedafactorof2.Sincethescatteringcross sectionofinterstellargrainsincreasesstronglyfromtheoptical For a line of sight passing close enough to the horizon of to the UV, wavelength-independent polarization is commonly thetorus(i.e.,wheniisonlymoderatelylargerthanθ0)wefind supposed to be the fingerprintof electron scattering. However, that the polarization vector is parallel, which means that type- scattering in opaque dust clouds produces relatively grey scat- 1polarizationcanbeproducedatobscuredviewinginclinations tering(Kishimoto2001). (Fig.10).Iftheinclinationincreasesfurtherthepolarizationvec- Ourapparentlycontradictoryresultofrelativelywavelength torswitchesbacktotype-2polarization.Itisinterestingtonote independentpolarizationwithdustscatteringarisesbecausewe thatsuchatoruscanproducesignificantpolarizationdegreesup are considering scattering off optically-thick material, and be- to2%forbothorientationsofthe E-vector. cause of the relatively small variation of the albedo over the Inordertoillustratetheintegraleffectoftheopeningangle optical and UV spectral regions (see Fig. 3). The approximate onthepolarization,weplotinFig.11thepolarization,Peff,av- constancyofthealbedoisbecausethescatteringandabsorption eraged overall type-2 viewing positions, and over wavelength, cross-sectionsvaryin asimilar mannerwithwavelength.Since asa functionofthehalf-openingangleofthe torus.Thediffer- we assume an optically-thick torus, we see emergent photons ence between type-1and type-2 polarizationis ignoredin Peff. thathavebeenscatteredatanopticaldepthτ∼1.Thisisregard- TheabsolutevaluesofPareintegrated. lessofwavelength2.Theincreaseinscatteringcross-sectionwith The figure shows that the torus polarizes most effectively decreasing wavelength only means that the shorter wavelength whenhavingeitherasmalloralargehalf-openingangle.Inthe photonswe see havebeenscatteredcloser to thesurfaceof the transitionregionbetweentype-1andtype-2polarization(i.e.for torus. 53◦ < θ < 60◦)theintegratedpolarizationgoesthroughamini- A significant change in albedo with wavelength, however, mum. will cause a color dependencyin the intensity and polarization of the scattered light3. Shortwardsof ∼ 2500Å the albedode- 4.4.Wavelengthinsensitivityofpolarizationduetodust creases,butthisrangeisatthelowerlimitofthespectralrange scattering considered in our modeling. The effect can be seen in the nor- malized flux spectra of the torus models shown in Figs. 5 and Wavelength-independentpolarizationiswidelytakentobeasig- 6. FortheGalacticdustcompositionweimplemented,itisless natureofelectronscattering,butwehaveshownin Figs. 6and visibleinthepolarizationspectra. 9thatdustscatteringcanalsoproducewavelength-independent Another grain property that needs to be considered is the scattering. Thusa flat polarizationcurve is not a uniquesigna- degree of asymmetry of the scattering since this is effectively ture of electron scattering. As Zubko & Laor (2000) pointout, anangle-dependentalbedochange.Towardshorterwavelengths, the wavelengthdependenceof polarizationprovidesa probeof Galactic dust grains are more strongly forward scattering and the grain scattering properties. Inspection of the wavelength- dependentpolarizationcurvesforthelargetorusgeometriescon- 2 Thisisthereasonthatthesunlitsidesofcloudsintheearth‘satmo- sidered above (see Figs. 6 and 9) shows that the polarization sphereareextremelywhite. for half-opening angles with 30◦ < θ0 < 60◦ is wavelength- 3 Thisisthecauseofcolorationsintheatmosphereofthegiantplan- independentovertheopticalandmostoftheUV.Forvaluesof ets. 10 Goosmann&Gaskell:ModelingAGNPolarization the polarization phase function changes (see Draine 2003). As forThomsonscattering,forward-scatteredlighthasalowerpo- 1.0 larizationthansideways-scatteredlight.Thepolarizationspectra obtainedforthetorusmodelsdependonthesephasefunctions. 0.8 Theyadditionallyexplainwhya slightwavelength-dependence of the polarization can be found for very narrow or very wide openinganglesofalargetorus(seeFig.9). 0.6 P 0.4 5. Polarizationfrompolar-scatteringregions Scattering in polar regionsof AGNs has allowed the discovery 0.2 of hidden Seyfert-1 nuclei in type-2 objects by radiation being periscopicallyscatteredaroundtheobscuringtorus.Thecentral 0.0 parts of the polar double cone have to be at least moderately ionizedduetotheintenseradiationfromtheAGN.Themedium 1.0 couldbeassociatedwiththewarmabsorberseeninmanyAGN (see Komossa 1999 for a review). The Doppler shift of the X- 0.8 ray absorption lines indicates that the medium is outflowingat roughly1000km/s.Withincreasingdistancefromthecenter,the 0.6 otdhuuetsfltsuomwbulisvmtebaloeticoointpytriaacdnaidlulyisn,tthdeiunnss,tiatcysootuyflpdteha-el1srooadbbijeaeptcitrosensaerdneetcn.roHetaoosweb.esvBcueerry,eotdhn.ids F / Finc 0.4 5.1.Polarelectronscattering 0.2 Thepolarizationinducedbyscatteringinpolar,conicalelectron- 0.0 scatteringregionshasbeenthesubjectofseveralpreviousstud- 10 20 30 40 50 60 70 80 90 ies.Brown&McLean(1977)developedaformalismtocompute Inclination i [deg] the polarization expected from scattering inside optically thin, Fig.12. Modeling double polar cones of various half-opening axisymmetricscatteringregions.Thisformalismwasappliedby angles.Top:polarization,P,withpositivevaluesdenotingtype- Miller&Goodrich(1990)andMilleretal.(1991)tocomputethe 2polarization(perpendiculartothesymmetryaxis).Bottom:the polarizationforpolarscatteringcones.Wolf&Henning(1999) fraction,F/F ,ofthecentralflux.Bothvaluesareplottedversus ∗ andWatanabeatal.(2003)extendedthemodelingtooptically- theinclinationiwithrespecttotheobserver.Thedifferentsym- thick material using Monte-Carlo techniques that can account bols denote different half-opening angles of the double-cone. formultiplescatterings. Legend:θ = 10◦ (black circles), θ = 30◦ (red squares), and WeconfirmsuchresultsinFig.12usingS.Thefigure θ = 45◦ (Cbluediamonds).TheopticCaldepthbetweentheinner C showsthedegreeofpolarizationandthetotalfluxasafunction andoutershelloftheconesissettoτ =1. es of the observer‘s inclination for an electron scattering double- coneofuniformdensityandwiththeopticaldepthτ =1.This es optical depth is measured in the vertical direction between the law.ComparisonofFig.13withFig.7ofWatanabeetal.(2003, innerandtheoutershellofonecone.Inordertoisolatetheef- bottompanel)showsthatthedifferencein Pisverysmallwith fectsofthescatteringconefromthepolarizationinducedbythe respecttoauniform-densitytorus. disk,weuseananisotropicallyemittingcentralsourcewiththe emission angles being restricted to the solid angle defined by the scattering cones. The three curves denote the half-opening 5.2.Polardustscattering angles θ = 10◦, θ = 30◦, and θ = 45◦. The inclination is C C C measuredfromthesymmetryaxisofthedouble-cone. Beyond the dust sublimation radius the scattering cone could As expected, polar electron-scattering cones produce type- containdust.Weinvestigatedthisusingasimilarbi-conicalge- 2 polarization directed perpendicularlyto their symmetry axis. ometry and our Galactic dust prescription – see section 3. In Thedegreeofpolarizationrises fromface-onto edge-onview- Fig. 14 we show the polarization and total flux resulting spec- ingangles.Thelattereffectisduetotheangle-dependentpolar- tra for a centrally-illuminateddust cone seen at differentview- ization phase function of Thomson scattering. For wider open- ing angles i. The half-opening angle of the cone has been set inganglesofthecones,thenetpolarizationPdecreasesbecause toθ = 30◦,anditsopticaldepthintheV-bandtothemoderate C it is the result of integrating a broaderdistribution of polariza- valueofτ =0.3.Thestrongwavelengthdependenceofthedust V tion vectors. The breaks of the polarization curves at i = θ extinctionproperties(seeFig.3)isclearlyvisibleinthefigure. C in Fig. 12 are due to the impact of multi-scattering inside the It differs for polar viewing angles, which cross the cone, from cones, the analogous breaks in total flux curves are due to the thosealongequatorialdirections.Theformeronesshowthedust angle-restrictedcentralemission. extinctionseenintransmission,whilethelatteronesshowdust InFig.13weplottheinfluenceoftheopticaldepthonthepo- reflection. larizationforthepolar-coneswithθ = 30◦.Thevariouscurves ThetotalfluxshowninthebottompanelofFig.14issignifi- C denote different optical depths. A similar case was considered cantlyreddenedwheni<θ .Inadditiontothat,thewellknown C by Watanabe et al. (2003). The density of their electron cones extinctionfeatureat2175µmisseen.Itsdepthdecreaseswithin- varies with the distance from the center according to a power creasinginclination.Inreflection(i.e.,alongequatorialviewing

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.