ebook img

Korff $F$-signatures of Hirzebruch surfaces PDF

0.41 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Korff $F$-signatures of Hirzebruch surfaces

KORFF F-SIGNATURES OF HIRZEBRUCH SURFACES DAISUKE HIROSE AND TADAKAZU SAWADA 7 1 0 2 n Abstract. M.VonKorffintroducedthe F-signatureof a normal a J projective variety, and computed the F-signature of the product of two projective lines P1 P1. In this paper, we compute F- 8 × signatures of Hirzebruch surfaces. ] G A Introduction . h t a Let R be a d-dimensional Noetherian local ring of prime characteris- m tic p with perfect residue field. Let F : R R be the Frobenius map, → [ that is, F(x) = xp for all elements x of R. We denote by FeR the ∗ 1 R-module whose abelian group structure is inherited by R, and whose v R-module structure is given by the e-th iterated Frobenius map Fe. If 5 F R is finitely generated as an R-module, we say that R is F-finite. 0 ∗ 9 Let the R-module FeR be decomposed as FeR = R⊕ae M , where M ∗ ∗ ∼ e e 1 ⊕ does not have free summands. In [HL02], C. Huneke and G. Leuschke 0 . introduced the notion of the F-signature s(R) of R as 1 0 a 7 s(R) = lim e . 1 e→∞ ped : v Xi The existence of the limit lime→∞(ae/ped) is not trivial. In [Tuc12], K. Tucker proved that the limit exists (under the assumption that r a R is F-finite). The notion of the F-signature is generalized by M. Hashimoto and Y. Nakajima in [HN15], and A. Sannai in [San15]. As aglobalanalogue, M. VonKorffintroducedtheF-signatureofanormal projective variety, which we call the Korff F-signature, in [Kor12]. He computed the Korff F-signature of the product of two projective lines P1 P1. In this paper, we compute Korff F-signatures of Hirzebruch × surfaces. In Section1, we review generalities onKorff F-signatures. InSection 2, we compute Korff F-signatures of projective spaces and Hirzebruch surfaces. In Section 3 and 4, we gather together the figures and the source code of wxMaxima in the computation of F-signatures of Hirze- bruch surfaces. 1 2 Daisuke Hirose and Tadakazu Sawada 1. Preliminaries In this section, we review generalities on Korff F-signatures. See [Kor12] for details. Let k be a field of positive characteristic p. Let X be a normal projective variety over k, and let D be a Q-divisor on X. We denote by Sec(X,D) the section ring Γ(X, (nD)) of D. Suppose that n≥0 OX Sec(X,D) is a finitely generated k-algebra of dimension at least two. L If c N is sufficiently divisible, then there exists an ample line bundle ∈ L on X such that Sec(X,cD) is isomorphic to a normal section ring Sec(X,L) = Γ(X,L⊗n) of L. We assume that c is sufficiently n≥0 divisible, and define the Korff F-signature s(X,D) of X along D to be L c s(Sec(X,cD)). (The F-signature of a graded ring is defined in the · same way as the case of local rings.) Let N = Zn be a lattice, and let M be the dual lattice of N. We ∼ denote N R (resp. M R) by N (resp. M ). Let Σ be a fan in Z Z R R ⊗ ⊗ N . We denote by X the toric variety corresponding to Σ. R Σ LetΣbeacompletefaninN withtheprimitivegeneratorsv ,...,v . R 1 n Let D ,...,D be the torus-invariant prime Weil divisors correspond- 1 n n ing to v ,...,v , respectively. Let D = a D be a torus-invariant 1 n i=1 i i Weil divisor on X. The polytope associated to the divisor D is defined P to be the polytope u M u v a for all i , and denoted by R i i { ∈ | · ≥ − } P . We may assume that P contains the origin. Then we denote D D by M the lattice M (P R), where P R is the R-vector sub- D D D ∩ · · space spanned by P in M . We denote by N the dual lattice of M . D R D D We define I to be the subset of 1,...,n such that the hyperplane D { } u u v = a determines a facet of P for i I , and P to be i i D D Σ,D { | · − } ∈ the polytope (v,t) (M Z) 0 (v,t) (v ,a ) < 1 for all i I . D R i i D { ∈ × | ≤ · ∈ } Suppose that P is not full-dimensional. Let π : N N be the D D → naturalprojection map. Let c betherational number such that π(c v ) i i i is the primitive generator for its ray in (N ) . We define P′ to be D R Σ,D thepolytope (v,t) (M Z) 0 (v,t) c (v ,a ) < 1 for alli I . D R i i i D { ∈ × | ≤ · ∈ } Theorem 1.1 ([Kor12], Proposition 4.4.4, Corollary 4.4.7). Let X be a d-dimensional projective toric variety over k, and let Σ be the fan correspondingto X. Let v ,...,v be the primitive generators of Σ, and 1 n let D ,...,D be the torus-invariant prime Weil divisors corresponding 1 n n to v ,...,v , respectively. Let D = a D be a (non-zero) effective 1 n i=1 i i torus-invariant Weil divisor on X. Then: P (1) If P is full-dimensional, then s(X,D) = Vol(P ). D Σ,D (2) If P is not full-dimensional, then s(X,D) = Vol(P′ ). D Σ,D Korff F-signature of Hirzebruch surfaces 3 2. Examples M. Von Korff computed Korff F-signatures of some toric varieties including the product of two projective lines P1 P1 in [Kor12]. In × this section, we compute Korff F-signatures of projective spaces and Hirzebruch surfaces. Example 2.1 (Projective spaces Pn). Let N = Zn with standard basis n e ,...,e . Let e = e , and let Σ be the fan in N consisting 1 n 0 − i=1 i R of the cones generated by all proper subsets of e ,e ,...,e . We see 0 1 n that X is isomorphic Pto the n-dimensional pr{ojective space}Pn. Let Σ D be the torus-invariant prime Weil divisor corresponding to the ray i R e in N for 0 i n. + i R n ≤ ≤ Let D = a D be a (non-zero) effective torus-invariant Weil i=0 i i divisor. We see that P n x a , i=1 i ≤ 0 x a , PD = (x1,...,xn) MR(cid:12) P1 ≥ − 1 . ∈ (cid:12)    (cid:12) ···   (cid:12) xn an  (cid:12) ≥ − (cid:12)    (cid:12)  Since a = 0 for some i, P has an interior point, andthe equations i D (cid:12) n 6 x = a ,x = a ,...,x = a define the facets of P , respec- i=1 i 0 1 − 1 n − n D tively. Hence we have I = 0,1,...,n . In what follows, we compute D P { } the volume of the n-dimensional parallelepipeds n 0 x +a t < 1, ≤ − i=1 i 0 0 x +a t < 1, PΣ,D = (x1,...,xn,t) (MD Z)R(cid:12) ≤ 1P 1 . ∈ × (cid:12)    (cid:12) ···   (cid:12) 0 xn +ant < 1  (cid:12) ≤ (cid:12)   Let a = ni=0ai. The point of the i(cid:12)(cid:12)ntersection of the n+ 1 hyper- n planes defined by x +a t = 1,x +a t = 0,...,x +a t = 0 P − i=1 i 0 1 1 n n is ( a /a,..., a /a,1/a). This is given by the following elementary 1 n − − P transformations of matrices: 1 1 1 a 1 0 0 0 a 1 0 − − ··· − ··· 1 0 0 a 0 1 0 0 a 0 1 1  ···   ···  → ··· ···  0 0 1 an 0   0 0 1 an 0   ···   ···   0 0 0 a 1   1 0 0 0 a /a 1 ··· ··· − 1 0 0 0 a /a  ··· − 1   ··· . → → 0 0 1 0 an/a ··· ··· −  0 0 1 0 an/a   0 0 0 1 1/a   ··· −   ···      4 Daisuke Hirose and Tadakazu Sawada Bythesameargument, weseethatthepointoftheintersectionofthe n n+1 hyperplanes defined by x +a t = 0, x +a t = 0 (l = k), − i=1 i 0 l l 6 x +a t = 1is( a /a,...,1 a /a,..., a /a,1/a)foreach1 k n. k k 1 k n Let v = t( −a /a,..., a−/a,P1/a), a−nd ≤ ≤ 0 1 n − − v = t( a /a,...,1 a /a,..., a /a,1/a) k 1 k n − − − for 1 k n. Since P is spanned by v ,v ,...,v , we have Σ,D 0 1 n ≤ ≤ s(Pn,D) = Vol(P ) Σ,D = det(v ,v ,...,v ) 0 1 n | | a /a 1 a /a a /a a /a 1 1 1 1 − − − ··· − a /a a /a 1 a /a a /a (cid:12)  − 2 − 2 − 2 ··· − 2 (cid:12) = (cid:12)det (cid:12) (cid:12) ··· (cid:12) (cid:12)  a /a a /a a /a 1 a /a (cid:12) n n n n (cid:12)  − − − ··· − (cid:12) (cid:12)  1/a 1/a 1/a 1/a (cid:12) (cid:12)  ··· (cid:12) (cid:12)  (cid:12) (cid:12) a1 a a1 a1 a(cid:12)1 (cid:12) − − − ··· − (cid:12) a a a a a (cid:12)  − 2 − 2 − 2 ··· − 2 (cid:12) = 1/an+1(cid:12)det (cid:12) (cid:12) ··· (cid:12) (cid:12)  a a a a a (cid:12) n n n n (cid:12)  − − − ··· − (cid:12) (cid:12)  1 1 1 1 1 (cid:12) (cid:12)  ··· (cid:12) (cid:12)  (cid:12) (cid:12) 0 a 0 0 (cid:12) (cid:12) ··· (cid:12) 0 0 a 0 (cid:12)  ··· (cid:12) = 1/an+1(cid:12)det (cid:12) (cid:12) ··· (cid:12) (cid:12)  0 0 0 a (cid:12) (cid:12)  ··· (cid:12) (cid:12)  1 1 1 1 (cid:12) (cid:12)  ··· (cid:12) = 1/a = 1(cid:12)/(a+a + +a ). (cid:12) (cid:12) 0 1 n (cid:12) ··· (cid:12) (cid:12) The following computation is the main result. Example 2.2 (Hirzebruch surfaces). All figures of this example are in Section 3. Let r be a positive integer, and let N = Z2 with standard basis e and e . Let v = e ,v = e ,v = e , and v = e + re . 1 2 1 1 2 2 3 2 4 1 2 − − We consider a fan Σ in N = R2. The fan Σ consists the four two- r R r dimensional cones v ,v , v ,v , v ,v , and v ,v , and all their 1 2 1 3 2 4 3 4 h i h i h i h i faces. The Hirzebruch surface X = X is defined by the fan Σ (see, Σr r e.g., [CLS11], Example 3.1.16.). Let D be the torus-invariant prime i divisors of X corresponding to v . We have linear equivalents D D i 1 4 ∼ and D D + rD in the divisor class group of X. For an effective 3 2 4 ∼ Q-divisor D = 4 a D , we have i=1 i i D a D +(a +a )D +(ra +a )D P 1 1 2 3 2 3 4 4 ∼ (a +ra +a )D +(a +a )D . 1 3 4 1 2 3 2 ∼ Korff F-signature of Hirzebruch surfaces 5 Hence (D) = ((a + ra + a )D + (a + a )D ). Without loss of ∼ 1 3 4 1 2 3 2 O O generality, we only compute the F-signature s(X,D) of X with respect to a (non-zero) effective Q-divisor D = a D +a D . 1 1 2 2 The polytope P is to be D x a , y a PD = (x,y) ∈ MR y ≥0−, 1 x+≥ry− 20 . (cid:26) (cid:12) ≤ − ≥ (cid:27) (cid:12) By the figure 1, we see that(cid:12)P is a square if and only if ra < a . (cid:12) D 2 1 In that case, I = 1,2,3,4 . On the other hand, if ra a , then P D 2 1 D { } ≥ is a triangle. That implies I = 1,3,4 . D { } (1) Suppose that P is a square, i.e., ra < a . Then I = 1,2,3,4 D 2 1 D { } Therefore 0 x+a t < 1, 1 ≤ 0 y +a t < 1, PΣ,D = (x,y,t) ∈ (MD ×Z)R(cid:12)(cid:12) 0 ≤ y <21, .    (cid:12) ≤ −   (cid:12) 0 x+ry < 1  (cid:12) ≤ − (cid:12)   We define polygons Q, R(x), and S(x)(cid:12)to be  (cid:12) 0 y +a t < 1, Q = (y,t) R2 ≤ 2 ∈ 0 y < 1 (cid:26) (cid:12) ≤ − (cid:27) (cid:12) a t y < 1 a t, = (y,t) R2(cid:12)(cid:12) − 2 ≤ − 2 , ∈ 1 < y 0 (cid:26) (cid:12) − ≤ (cid:27) (cid:12) 0 x+a t < 1, R(x) = (y,t) R2(cid:12)(cid:12) ≤ 1 ∈ 0 x+ry < 1 (cid:26) (cid:12) ≤ − (cid:27) (cid:12) x/a t < x/a +1/a , = (y,t) R2(cid:12)(cid:12) − 1 ≤ − 1 1 , ∈ x/r y < x/r +1/r (cid:26) (cid:12) ≤ (cid:27) (cid:12) (cid:12) (cid:12) and S(x) = Q R(x).(See the figure 2.) ∩ Then Q is a parallelogram, R(x) is a rectangle, and P = (x,y,t) (M Z) x x x ,(y,t) S(x) , Σ,D D R min max { ∈ × | ≤ ≤ ∈ } wherex = min x R S(x) = andx = max x R S(x) = . min max { ∈ | 6 ∅} { ∈ | 6 ∅} Therefore xmax s(X,D) = Vol(P ) = Area(S(x))dx. Σ,D Zxmin We define some points and lines in the ty-plane appearing in our argument. Let A,B,C, and D be the vertices of the rectangle R(x). 6 Daisuke Hirose and Tadakazu Sawada In particular, 1 1 1 1 1 A = x, x ,B = x+ , x , −a r −a a r (cid:18) 1 (cid:19) (cid:18) 1 1 (cid:19) 1 1 1 1 1 1 1 C = x+ , x+ ,and D = x, x+ . −a a r r −a r r (cid:18) 1 1 (cid:19) (cid:18) 1 (cid:19) The point A moves along the line y = a t/r, denoted by l . The 1 1 − points B and D move along the line y = a t/r +1/r, denoted by l . 1 2 − The point C moves along the line y = a t/r+2/r, denoted by l . 1 3 − We denote the vetices of the parallelogram Q except the origin O by E,F, and G. That is, 1 2 1 E = , 1 ,F = , 1 ,and G = ,0 . a − a − a (cid:18) 2 (cid:19) (cid:18) 2 (cid:19) (cid:18) 2 (cid:19) Let H and I be the intersection points of the t-axis with l and l , 2 3 respectively. We denote the intersection points of the line y = 1 with − l , l , and l by J, K, and L, respectively. That is, 1 2 3 1 2 H = ,0 , I = ,0 , a a (cid:18) 1 (cid:19) (cid:18) 1 (cid:19) r r +1 r +2 J = , 1 , K = , 1 , and L = , 1 . a − a − a − (cid:18) 1 (cid:19) (cid:18) 1 (cid:19) (cid:18) 1 (cid:19) For the point A, we denote the t-coordinate of A and y-coordinate of A by A and A , respectively. We use the same notation for all points t y in the ty-plane. For example, B = x/a +1/a and J = 1. t 1 1 y − − The shape of the polygon P depends on how the lines l ,l and Σ,D 1 2 l across the parallelogram Q. We divide into five subcases from (1-1) 3 through (1-5): (1-1) We assume that L E . That is, (r + 2)/a 1/a . This is t t 1 2 ≤ ≤ equivalent to (r + 2)a a . Then 2a a . This is equivalent to 2 1 2 1 ≤ ≤ 2/a 1/a . Hence I G . (See the figure 4.) 1 2 t t ≤ ≤ We denote the intersection points of the line OE with l and l by 2 3 T and U, respectively. Then 1 a 2 2a 2 2 T = , , and U = , . a ra −a ra a ra −a ra (cid:18) 1 − 2 1 − 2(cid:19) (cid:18) 1 − 2 1 − 2(cid:19) If C = U, then ( x/a +1/a ,x/r+1/r) = (2/(a ra ), 2a /(a 1 1 1 2 2 1 − − − − ra )). Hence x = (a +ra )/(a ra ). If D = T, then ( x/a ,x/r+ 2 1 2 1 2 1 − − − 1/r) = (1/(a ra ), a /(a ra )). Hence x = a /(a ra ). If 1 2 2 1 2 1 1 2 − − − − − B = T, then ( x/a + 1/a ,x/r) = (1/(a ra ), a /(a ra )). 1 1 1 2 2 1 2 − − − − Hence x = ra /(a ra ). If C = I and D = H, then ( x/a + 2 1 2 1 − − − Korff F-signature of Hirzebruch surfaces 7 1/a ,x/r + 1/r) = (2/a ,0). Hence x = 1. If A = O and B = H, 1 1 − then ( x/a ,x/r) = (0,0). Hence x = 0. 1 − Since 0 < ra < a , we have ra < a < a +ra and a ra > 0. 2 1 2 1 1 2 1 2 − Hence (a + ra )/(a ra ) < a /(a ra ) < ra /(a ra ). 1 2 1 2 1 1 2 2 1 2 − − − − − − Since a ra < a , we have a /(a ra ) < 1. If 2ra a , then 1 2 1 1 1 2 2 1 − − − − ≤ 1 ra /(a ra ). Therefore 2 1 2 − ≤ − − a +ra a ra 2 2 1 2 < < 1 < < 0. −a ra −a ra − −a ra 1 2 1 2 1 2 − − − On the other hand, if 2ra > a , then ra /(a ra ) < 1. Therefore 2 1 2 1 2 − − − a +ra a ra 2 2 1 2 < < < 1 < 0. −a ra −a ra −a ra − 1 2 1 2 1 2 − − − Forvariousvaluesofx, weconsider shapesofS(x)andareasofthem. If (a + ra )/(a ra ) < x < a /(a ra ), then S(x) is a 2 2 1 2 1 1 2 − − − − triangle as in the figure 5. Hence 1 1 1 a a 1 1 1 1 2 2 Area(S(x)) = x+ x x+ x 2 r r − a − a · −a a − −ra − ra (cid:26)(cid:18) (cid:19) (cid:18) 1 1(cid:19)(cid:27) (cid:26)(cid:18) 1 1(cid:19) (cid:18) 2 2(cid:19)(cid:27) 1 = (a ra )x+(a +ra ) 2. 2a2a r2 { 1 − 2 1 2 } 1 2 (1-1-1) Suppose that 2ra a . 2 1 ≤ If a /(a ra ) < x < 1, then S(x) is a trapezoid as in the figure 1 1 2 − − − 6. Hence 1 1 1 a 1 1 a a 1 2 2 2 Area(S(x)) = x+ x + x+ x+ 2 r r − a r r − a a · a (cid:26)(cid:18) 1 (cid:19) (cid:18) 1 1(cid:19)(cid:27) 1 1 = 2(a ra )x+2a +ra . 2a2r { 1 − 2 1 2} 1 We denote this area by V . 1 If 1 < x < ra /(a ra ), then S(x) is a tropezoid as in the 2 1 2 − − − figure 7. Hence 1 a a a 1 2 2 2 Area(S(x)) = x x+ 2 −a − a a · a (cid:18) 1 1 1(cid:19) 1 a 2 = (1 2x). 2a2 − 1 We denote this area by V . 2 8 Daisuke Hirose and Tadakazu Sawada If ra /(a ra ) < x < 0, then S(x) is a pentagon as in the figure 2 1 2 − − 8. Hence 1 1 1 a 1 1 1 2 Area(S(x)) = x x x x x −r · a − 2 a − r · −ra − −a 1 (cid:18) 1 (cid:19) (cid:26) 2 (cid:18) 1 (cid:19)(cid:27) 1 (a ra )2 = x 1 − 2 x2. −ra − 2r2a2a 1 1 2 We denote this area by V . 3 Therefore s(X,D) = Vol(P ) Σ,D = −a1−a1ra2 1 (a ra )x+(a +ra ) 2dx Z−aa12−+rraa22 2a21a2r2 { 1 − 2 1 2 } −1 − ra2 0 a1−ra2 + V dx+ V dx+ V dx 1 2 3 Z−a1−a1ra2 Z−1 Z−a1r−ar2a2 a 2 = . a (a a r) 1 1 2 − In the above calculation, we use wxMaxima (see Section 4 (%o1)). (1-1-2) Suppose that 2ra > a . If a /(a ra ) < x < ra /(a 2 1 1 1 2 2 1 − − − − ra ), then S(x) is a trapezoid as in the figure 9, which is the same 2 shape as that in the case where a /(a ra ) < x < 1 on (1-1-1). 1 1 2 − − − Then Area(S(x)) = V . 1 If ra /(a ra ) < x < 1, then S(x) is a pentagon as in the 2 1 2 − − − figure 10. Hence 1 1 1 1 1 a 1 1 1 2 Area(S(x)) = x+ x x x x r r − r · a − 2 a − r · −ra − −a (cid:18) (cid:19) 1 (cid:18) 1 (cid:19) (cid:26) 2 (cid:18) 1 (cid:19)(cid:27) 1 (a ra )2 = 1 − 2 x2. ra − 2a2a r2 1 1 2 We denote this area by V . 4 If 1 < x < 0, then S(x) is a pentagon as in the figure 11, which is − the same shape as that in the case where ra /(a ra ) < x < 0 on 2 1 2 − − (1-1-1). Then Area(S(x)) = V . 3 Korff F-signature of Hirzebruch surfaces 9 Therefore s(X,D) = Vol(P ) Σ,D = −a1−a1ra2 1 (a ra )x+(a +ra ) 2dx Z−aa12−+rraa22 2a21a2r2 { 1 − 2 1 2 } − ra2 −1 0 a1−ra2 + V dx+ V dx+ V dx 1 4 3 Z−a1−a1ra2 Z−a1r−ar2a2 Z−1 a 2 = , a (a a r) 1 1 2 − (see Section 4 (%o2)). (1-2) We assume that K < E < L . That is, (r + 1)/a < 1/a < t t t 1 2 (r + 2)/a . This is equivalent to (r + 1)a < a < (r + 2)a . Then 1 2 1 2 2a < a . We have I G . Since (r +1)a < a and a ra < a , 2 1 t t 2 1 2 2 1 ≤ ≤ we have (r +2)a < 2a . Therefore L < F . The point T denotes the 2 1 t t same in the case (1-1). (See the figure 12.) If C = L and D = K, then ( x/a + 1/a ,x/r + 1/r) = ((r + 1 1 − 2)/a , 1). Hence x = (r +1). If B = E , then (1/a )x+1/a = 1 t t 1 1 − − − 1/a . Hence x = (a a )/a . By the same argument in the case 2 1 2 2 − − (1-1), we have the following four values of x. If D = T, then x = a /(a ra ). If B = T, then x = ra /(a ra ). If C = I and 1 1 2 2 1 2 − − − − D = H, then x = 1. If A = O and B = H, then x = 0. − Since (r + 1)a < a , we have r(r + 1)a + a < (r + 1)a . Hence 2 1 2 1 1 a < (r + 1)(a ra ). Therefore (r + 1) < a /(a ra ). If 1 1 2 1 1 2 − − − − a /(a ra ) > (a a )/a , then a2 (r+2)a a +ra2 > 0. We have 1 1− 2 1− 2 2 1− 2 1 2 (r +2) √r2 +4 (r+2)+√r2 +4 − a < a < a . 2 1 2 2 2 By the assumption that (r +1)a < a < (r +2)a , we have a /(a 2 1 2 1 1 − ra ) > (a a )/a in case (1-2). Therefore a /(a ra ) < (a 2 1 2 2 1 1 2 1 − − − − − a )/a . Since 2a < a , we have a < a a . Hence (a a )/a < 2 2 2 1 2 1 2 1 2 2 − − − 1. The assumption that (r + 1)a < a gives the inequalities ra < 2 1 2 − a a and a < a ra . Those imply ra /(a ra ) < (a 1 2 2 1 2 2 1 2 1 − − − − a )/a . Therefore (a a )/a < ra /(a ra ). Finally, we com- 2 2 1 2 2 2 1 2 − − − − pare the inequality between 1 and ra /(a ra ). Suppose that 2 1 2 − − − 1 < ra /(a ra ). Then a > 2ra . With the assumption that 2 1 2 1 2 − − − a < (r+2)a , we have 2ra < (r+2)a . Hence r < 2. That is, r = 1. 1 2 2 2 Therefore if r = 1, then a a a ra 1 1 2 2 (r +1) < < − < 1 < < 0. − −a ra − a − −a ra 1 2 2 1 2 − − 10 Daisuke Hirose and Tadakazu Sawada By the same argument, if ra /(a ra ) < 1, then 1 < r. Therefore 2 1 2 − − − if r 2, then ≥ a a a ra 1 1 2 2 (r +1) < < − < < 1 < 0. − −a ra − a −a ra − 1 2 2 1 2 − − We remark that ra /(a ra ) = 1, because r is integer. 2 1 2 − − 6 − Forvariousvaluesofx, weconsider shapesofS(x)andareasofthem. If (r+1) < x < a /(a ra ), then S(x) is a trapezoid as in the 1 1 2 − − − figure 13. Hence 1 1 1 1 1 1 1 1 Area(S(x)) = x+ x + x+ 2 −a a − −ra − ra −a a − a (cid:26)(cid:18) 1 1 (cid:18) 2 2(cid:19)(cid:19) (cid:18) 1 1 2(cid:19)(cid:27) 1 1 x+ ( 1) × r r − − (cid:18) (cid:19) 1 = (a 2a r)x+2a r+a a r (x+r +1). 2a a r2 { 1 − 2 2 1 − 1 } 1 2 If a /(a ra ) < x < (a a )/a , then S(x) is a pentagon as 1 1 2 1 2 2 − − − − in the figure 14. Hence 1 1 1 1 1 1 a 2 Area(S(x)) = x+ ( 1) x x ( 1) r r − − · a − 2 a − −a · a − − (cid:26) (cid:27) 1 (cid:26) 2 (cid:18) 1 (cid:19)(cid:27) (cid:26) 1 (cid:27) 1 1 = (x+r +1) (a x+a )2. a r − 2a2a 2 1 1 1 2 We denote this area by V . 5 (1-2-1) Suppose that r = 1. If (a a )/a < x < 1, then S(x) is a 1 2 2 − − − trapezoidasinthefigure15, which isthesameshapeasthatinthecase where a /(a ra ) < x < 1 on (1-1-1). Hence Area(S(x)) = V . 1 1 2 1 − − − If 1 < x < ra /(a ra ), then S(x) is a trapezoid as in the 2 1 2 − − − figure 16, which is the same shape as that in the case where 1 < x < − ra /(a ra ) on (1-1-1). Hence Area(S(x)) = V . 2 1 2 2 − − If ra /(a ra ) < x < 0, then S(x) is a pentagon as in the figure 2 1 2 − − 17, which isthesameshape asthat inthecasewhere ra /(a ra ) < 2 1 2 − − x < 0 on (1-1-1). Hence Area(S(x)) = V . 3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.