ebook img

KK-theory and Spectral Flow in von Neumann Algebras PDF

0.37 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview KK-theory and Spectral Flow in von Neumann Algebras

KK -THEORY AND SPECTRAL FLOW IN VON NEUMANN ALGEBRAS 7 0 0 J. KAAD, R. NEST, A. RENNIE 2 n Institute for Mathemati al S ien es, University of Copenhagen a Universitetsparken 5, DK-2100 Copenhagen, Denmark J 1 1 Abstra t J We present a de(cid:28)nitionof spe tral (cid:29)ow forany norm losed ideal inany von Neumann algebra ] N N N/J A . Given a path of selfadjoint operators in whi h are invertible in , the spe tral (cid:29)ow K (J) O 0 produ es a lass in . . ( ,H, ) (N,τ) [ ] h Given a semi(cid:28)nite spe tral triple A D relative to , we onstru t a lass D ∈ t KK1(A, (N)) u u∗ u a K . For a unitary ∈ A, the von Neumann spe tral (cid:29)ow between D and D is m [u]ˆA[ ] equal to the Kasparov produ t ⊗ D , and is simply related to the numeri al spe tral (cid:29)ow, C [ ∗ and a re(cid:28)ned -spe tral (cid:29)ow. 1 v Contents 6 2 3 1. Introdu tion 2 1 0 2. K-theory-valued von Neumann Index Theory 2 7 0 3. Von Neumann Spe tral Flow 6 / h 3.1. Basi De(cid:28)nitions and Properties 6 t a 3.2. Von Neumann Spe tral Triples and Spe tral Flow 11 m : 4. Kasparov Modules from Spe tral Triples 13 v i 4.1. Constru tion of a Kasparov Module 13 X K (A) 1 r 4.2. The Pairing with and Spe tral Flow 14 a C ∗ 5. -Spe tral Flow 16 5.1. Basi De(cid:28)nitions 17 C ∗ 5.2. The Relationship Between -Spe tral Flow and von Neumann Spe tral Flow 18 6. Numeri al Spe tral Flow 19 7. Appendix on Kasparov Produ ts 23 K KK1 1 7.1. Produ t between and 25 Referen es 29 email: jenskaadhotmail. om,rnestmath.ku.dk,renniemath.ku.dk. 1 2 J. KAAD,R. NEST, A. RENNIE 1. Introdu tion The theory of analyti spe tral (cid:29)ow has re eived a great deal of attention in re ent years, with signi(cid:28) ant progress being made by many authors, [2, 4, 8, 9, 10, 22, 23, 24, 27℄. The arti le [27℄ ontains a mu h more detailed review of other aspe ts of spe tral (cid:29)ow. K Here we take a slightlydi(cid:27)erent ta k, repla ingnumeri almeasures ofspe tral(cid:29)ow by -theory valued measures, as in [18, 27℄. The advantages of this approa h are the great generality in whi h it an be de(cid:28)ned, and its ompatibility with the various numeri al notions. This ompatabilityyields onstraintson thepossible valuesof spe tral (cid:29)ow, whi h, forexample, in the semi(cid:28)nite setting of [22, 23℄, is a priori any real number. Our des ription of spe tral K (cid:29)ow allows one to fa tor through a -theory group, and so onstrain the possible values of the K spe tral (cid:29)ow. The more re(cid:28)ned we an be about the target -theory group, the more re(cid:28)ned our information. J We de(cid:28)ne von Neumann spe tral (cid:29)ow for any norm losed ideal in any von Neumann algebra N N N/J . Given a path of selfadjoint operators in whi h are invertible in , we obtain a lass in K (J) K (J) 0 0 . In order tobe able towork insu h a general ontext, we need todevelop a -valued N,J index theory for any su h pair . Su h an index theory is developed in Se tion 2, and then in Se tion 3 we de(cid:28)ne and study the von Neumann spe tral (cid:29)ow. We then follow the approa h of [22, 23℄, de(cid:28)ning spe tral (cid:29)ow in terms of relative indi es of proje tions. A losely related idea whi h we introdu e is a von Neumann spe tral triple, modelled on the N J de(cid:28)nition of semi(cid:28)nite spe tral triples, but valid for any von Neumann algebra and ideal . We show that su h a triple de(cid:28)nes a Kasparov lass, and relate the spe tral (cid:29)ow to Kasparov produ ts. KK In parti ular, every semi(cid:28)nite spe tral triple represents a - lass, just as ordinary spe tral K triples represent -homology lasses. This extends the observed relation in [18, 19℄. K K ( ) 0 In Se tion 5 we dis uss the onsequen es of re(cid:28)ning our target -theory group to B , where J σ B ⊂ is a -unital subalgebra. We show that this an always be done for a von Neumann C ∗ spe tral triple, and so we an de(cid:28)ne a -spe tral (cid:29)ow. We relate this spe tral (cid:29)ow to our previously de(cid:28)ned von Neumann spe tral (cid:29)ow. C ∗ Se tion 6 relates both von Neumann and spe tral (cid:29)ow for a semi(cid:28)nite spe tral triple to the numeri al spe tral (cid:29)ow obtained from a tra e. KK The Appendix summarisessomeresultsfrom -theorythatwe require, andproves anexpli it KK formula for ertain odd pairings in -theory, whi h plays a key role throughout the paper. A knowledgements It is a pleasure to thank Alan Carey and John Phillips for many helpful onversations about spe tral (cid:29)ow. 2. K-theory-valued von Neumann Index Theory N H Throughout this se tion, we let be a von-Neumann algebra a ting on a Hilbert spa e and J N π : N N/J let be a norm losed ideal in . Let → be the quotient map. KK -THEORY AND SPECTRAL FLOW IN VON NEUMANN ALGEBRAS 3 S : H H In all the following, we will distinguish between the kernel of an operator → alled ker(S) N(S) (H) and the proje tion onto the kernel alled ∈ L . Likewise we have the image of S (S) (S) R(S) (H) S , Im and the proje tion onto the norm losure of Im , denoted ∈ L . If is in N N(S) R(S) N then and are in also. p,q (H) (p) (q) p q (H) Foranytwoproje tions ∈ L wedenotetheproje tionontoIm ∩Im by ∩ ∈ L . p,q N S N Sp = pS Sq = qS Sp q = p qS ′ If ∈ and ∈ , then and thus ∩ ∩ . It follows easily that p q N = N ′′ ∩ ∈ . S N We re all some fa ts about the polar de omposition of an operator. Let ∈ . The partial u N S S S isometry ∈ from the polar de omposition of is alled the phase of . The phase of has the following properties u S = S S = u S ∗ ∗ ∗ | | | | uu = R(u) = R(S) u u = R(u ) = R(S ) ∗ ∗ ∗ ∗ 1 uu = N(u ) = N(S ) 1 u u = N(u) = N(S) ∗ ∗ ∗ ∗ − − K C ∗ See [12, Appendi e III℄ for more details. Sin e -theory is well-de(cid:28)ned for non-separable - K algebras, we an ask what the generalised index map in -theory gives us for an invertible in N/J the `Calkin algebra' . [π(S)] K (N/J) K (N/J) π(S) 1 1 LemmSa 2.M1. (LNet) ∈ n N be a lass in represented by the unitary , n where ∈ for some ∈ . Then ∂[π(S)] = [N(S)] [N(S )] K (J), ∗ 0 − ∈ ∂ : K (N/J) K (J) K 1 0 where → is the boundary map in -theory. See for instan e [3, De(cid:28)nition 8.3.1 ℄. M (N) = M (C) N n n Proof. The algebra ⊗ is a von-Neumann algebraa ting on the Hilbert spa e n H S M (N) u M (N) S u ⊕i=1 so an be polar de omposed in n . Let ∈ n be the phase of . Now, is π(S) a lift of sin e π(S) = π(u S ) = π(u)π(S S)1/2 = π(u) ∗ | | And we on lude from the de(cid:28)nition of the boundary map, [3, 14, 26℄, that ∂[π(S)] = [1 u u] [1 uu ] = [N(S)] [N(S )] ∗ ∗ ∗ − − − − (cid:3) as laimed. S The generi situation where the index of an operator is relevant for appli ations is when S : H H 1 2 → . Even to de(cid:28)ne `odd' index pairings one requires su h operators. Thus one must N qNp p,q N onsider operators not in a von Neumann algebra , but in a skew- orner where ∈ are proje tions. This situationwas (cid:28)rst onsidered in [11℄ for semi(cid:28)nite von Neumann algebras. The following de(cid:28)nition generalises the semi(cid:28)nite notion of Fredholm. p,q N S qNp (q p) De(cid:28)nition 2.2. Let be proje tions in . Then ∈ is a - -Fredholm operator if T,R pNq there exists a ∈ su h that π(TS) = π(p) π(SR) = π(q) and π(T) = π(TSR) = π(R) R = T T Sin e , we an hoose . The operator is alled a parametrix S for . 4 J. KAAD,R. NEST, A. RENNIE S qNp Remark 2.3. Suppose we have an operator ∈ . Then N(S) p = N(S)p N(S ) q = N(S )q ∗ ∗ ∩ and ∩ This follows immediately sin e (1 p)N(S) = (1 p) = N(S)(1 p) pN(S) = N(S)p − − − ⇒ N(S) p = N(S)p N(S ) q ∗ so ∩ . Similar omments apply to the proje tions and . S qNp u N S u qNp Lemma 2.4. Let ∈ and let ∈ be the phase of . Then ∈ and we have the identities p u u = N(S) (1 p) = N(S) p ∗ − − − ∩ q uu = N(S ) (1 q) = N(S ) q. ∗ ∗ ∗ − − − ∩ S qNp (q p) π(u u) = π(p) π(uu ) = π(q) ∗ ∗ Furthermore if ∈ is a - -Fredholm operator then and . u (q p) N(S) p,N(S ) q J ∗ In parti ular is - -Fredholm and ∩ ∩ ∈ u qNp (1 p)H (S) = (u) (u) = (S) qH Proof. First, is in sin e − ⊆ Ker Ker and Im Im ⊆ . Next, (1 p)N(S) = (1 p) N(S) (1 p) = N(S) N(S)(1 p) = N(S)p = N(S) p − − so − − − − ∩ by N(S ) q ∗ Remark 2.3. The statement on erning and is proved in the same way. S qNp (q p) T pNq Now, suppose that ∈ is a - -Fredholm operator with parametrix ∈ . Then S S pNp (p p) TT pNp π(S S) ∗ ∗ ∗ ∈ is a - -Fredholmoperator with parametrix ∈ . This means that C π(p)N/Jπ(p) π(SS ) C ∗ ∗ ∗ is invertible in the -algebra . Similarly is invertible in the -algebra π(q)N/Jπ(q) u qNp S qNp π(S)π(S S) 1/2 ∗ − Clearly, then the phase ∈ of ∈ is a lift of ∈ π(q)N/Jπ(p) . This allows us to dedu e the identities π(u u) = π(S S) 1/2π(S S)π(S S) 1/2 = π(p) ∗ ∗ − ∗ ∗ − and π(uu ) = π(S)π(S S) 1π(S ) = π(q) ∗ ∗ − ∗ (cid:3) as desired. The result allows us to make the following de(cid:28)nition. S qNp (q p) (q p) S De(cid:28)nition 2.5. Let ∈ be a - -Fredholm operator. We de(cid:28)ne the - -index of as the lass (S) = [N(S) p] [N(S ) q] (q ) ∗ Ind -p ∩ − ∩ K (J) 0 in . S qNp (q p) u qNp S Let ∈ be a - -Fredholm operator and let ∈ be the phase of . The triple (p,q,u) K [S] := [p,q,u] K (N,N/J) 0 is a relative - y le and thus de(cid:28)nes the lass ∈ in relative K K K (N,N/J) K K (J) 0 0 -theory. The relative -theory is related to the -theory of the ideal through the ex ision map : K (J) K (N,N/J) 0 0 Ex → 4.3.7 4.3.8 as de(cid:28)ned in [14, De(cid:28)nition ℄. The ex ision map is an isomorphism, [14, Theorem ℄. (q p) S In the next theorem we will see that the - -index of is simply the inverse of the ex ision [S] K (N,N/J) (q p) 0 map applied to the lass ∈ . Many properties of the - -index will thus follow immediately, and we will state the ones we need as orollaries. KK -THEORY AND SPECTRAL FLOW IN VON NEUMANN ALGEBRAS 5 S qNp (q p) u qNp S Theorem 2.6. Let ∈ be a - -Fredholm operator and let ∈ be the phase of . Then the identity 1[S] = (S) − q p Ex Ind - K (J) 0 is valid in [S] K (N,N/J) 0 Proof. We an express the lass ∈ as a sum of lasses [S] = [p,q,u] = [p u u,q uu ,0]+[u u,uu ,u] ∗ ∗ ∗ ∗ − − K (u u,uu ,u) ∗ ∗ The relative - y le is degenerate so a tually [S] = [p u u,q uu ,0] ∗ ∗ − − p u u = N(S) p q uu = N(S ) q J ∗ ∗ ∗ The proje tions − ∩ and − ∩ are in by Lemma 2.4, so 1[S] = [p u u] [q uu ] = (S) − ∗ ∗ q p Ex − − − Ind - (cid:3) as desired. S qNp S qNp (q p) 0 1 Corollary 2.7. Let ∈ and ∈ be - -Fredholm operators. Suppose that there (q p) S S 0 1 is a norm- ontinuous path of - -Fredholm operators onne ting and . Then (S ) = (S ) (q ) 0 (q ) 1 Ind -p Ind -p t S qNp S S t 0 1 Proof. Let 7→ ∈ be the norm- ontinuous path onne ting and . The norm- t π(S )π(S S ) 1/2 π(q)N/Jπ(p) π(p)N/Jπ(p) ontinuous path 7→ t t∗ t − ∈ , where the inverse is in , t v qN/Jp (p,q,v ) K t [0,1] t t lifts to a path 7→ ∈ su h that are relative - y les for all ∈ , [14, 4.3.13 u qNp u qNp S S 0 1 0 1 Lemma ℄. If ∈ and ∈ are the phases of and respe tively, then π(u ) = π(v ) π(u ) = π(v ) 0 0 1 1 and so we have the identity [S ] = [p,q,u ] = [p,q,v ] = [p,q,v ] = [p,q,u ] = [S ] 0 0 0 1 1 1 K (N,N/J) 0 in . It thus follows immediately by Theorem 2.6 that (S ) = 1[S ] = 1[S ] = (S ) (q p) 0 − 0 − 1 (q p) 1 Ind - Ex Ex Ind - (cid:3) as desired. S qNp (q p) T rNq (r q) Corollary 2.8. Let ∈ be a - -Fredholm operator and let ∈ be an - - TS (r p) Fredholm operator. Then is an - -Fredholm operator and (T)+ (S) = (TS) (r q) (q p) (r p) Ind - Ind - Ind - v rNq u qNp w rNp T S TS Proof. Let ∈ , ∈ and ∈ be the phases of , and respe tively. From the al ulation π(w) = π(TS)π(S T TS) 1/2 ∗ ∗ − = π(T)π(SS T T) 1/2π(S) ∗ ∗ − = π(T)π(T T) 1/2π(S)π(S S) 1/2 ∗ − ∗ − = π(vu) [p,r,vu] = [p,r,w] K (N,N/J) 0 we dedu e the identity in . 6 J. KAAD,R. NEST, A. RENNIE [T] [S] K (N,N/J) 0 Summing the lasses and in we get [T]+[S] = [q,r,v]+[p,q,u] = [p,r,vu] = [p,r,w] = [TS] K (N,N/J) 0 where the se ond equality follows from the relations in . This allows us to on lude that (T)+ (S) = 1[T]+ 1[S] = 1[TS] = (TS) (r q) (q p) − − − (r p) Ind - Ind - Ex Ex Ex Ind - (cid:3) as desired. N Let be a semi(cid:28)nite von Neumann algebra equipped with a (cid:28)xed normal, semi(cid:28)nite, faithful τ τ N tra e . Let K be the - ompa t operators as de(cid:28)ned in De(cid:28)nitionτ6.1:.KA(ll pr)oje tRions in N 0 N K have (cid:28)nite tra e by Theorem 6.5. Applying the homomorphism ∗ K → from Theorem 6.4 to the main theorems of this se tion we obtain some of the important results from Breuer-Fredholm theory, [2, 5, 6, 8, 9, 10, 11, 22, 23, 24℄. 3. Von Neumann Spe tral Flow 3.1. Basi De(cid:28)nitionsand Properties. HavingsetuptheappropriateindextheoryforFred- pNq holm operators in skew- orners , [11℄, we now analyse spe tral (cid:29)ow. This is asso iated with p q odd index pairings, and so self-adjoint operators. Spe ialising our de(cid:28)nition of - -Fredholm to p = q = 1 the ase we have the following. T N J π(T) N/J De(cid:28)nition 3.1. An operator ∈ is said to be -Fredholm if is invertible in . The J J spa e of -Fredholm operators is denoted by F. The spa e of selfadjoint -Fredholm operators sa is denoted by F χ : R R [0, ) Let → be the indi ator fun tion for the interval ∞ de(cid:28)ned by 1 t [0, ) χ(t) = ∈ ∞ 0 t ( ,0) (cid:26) ∈ −∞ 4.3 The following lemma was (cid:28)rst proved in [2, Lemma ℄ in the semi(cid:28)nite ontext. In fa t it makes sense and is true in the more general ontext onsidered here. We quote the statement and proof for ompleteness. T π χ(T) = χ π(T) sa Lemma 3.2. Let ∈ F then . (cid:0) (cid:1) (cid:0) (cid:1) χ π(T) 0 / π(T) ε > 0 Proof. Note that makes sense sin e ∈ Sp thus we an (cid:28)nd an su h that [ ε,ε] π(T) fthe:iRntervRal − (cid:0)is in lu(cid:1)ded in the resolvent set of(cid:0) .(cid:1)Now de(cid:28)ne the ontinuous fun tions 1 → 0 t ( , ε] ∈ −∞ − f (t) = ε 1t+1 t [ ε,0] 1 −  ∈ − 1 t [0, )  ∈ ∞ f : R R 2 and → by  0 t ( ,0] ∈ −∞ f (t) = ε 1t t [0,ε] 2 −  ∈ 1 t [ε, )  ∈ ∞  KK -THEORY AND SPECTRAL FLOW IN VON NEUMANN ALGEBRAS 7 f = χ = f (π(T)) f χ f (T) 1 2 1 2 So on Sp while ≥ ≥ on Sp . Thus χ π(T) = f π(T) = π f (T) π χ(T) π f (T) = f π(T) = χ π(T) 1 1 2 2 ≥ ≥ χ(cid:0) π(T(cid:1)) = π(cid:0) χ(T)(cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:3) yielding as desired. (cid:0) (cid:1) t (cid:0) B (cid:1) t χ π(B ) t sa t Lemma 3.3. Let 7→ be a norm ontinuous path in F . Then 7→ is a norm C N/J ∗ ontinuous path in the -algebra . (cid:0) (cid:1) C ∗ To prove this lemma we need a general result from the theory of -algebras. The result is probably well-known to the experts, but as we ould not (cid:28)nd a referen e, we in lude a proof. A C U R A ∗ sa Lemma 3.4. Let be a -algebra and let be an open subset of . Denote by the real A subspa e of selfadjoint elements with the indu ed topology from . Then the set a A (a) U sa { ∈ |Sp ⊆ } A sa is open in a A (a) U ( ,Uc) : C [0, [ sa Proof. Let ∈ with Sp ⊆ . The fun tion dist · → ∞ de(cid:28)ned by (λ,Uc) = inf λ µ µ Uc dist {| − || ∈ } λ C (a) for all ∈ is ontinuous. It attains thus its minimumon the ompa t set Sp . Furthermore λ (a) (λ,Uc) > 0 λ / Uc = Uc for ∈ Sp we have dist be ause ∈ , so the minimumis stri tly positive. Set (a),Uc inf λ µ λ (a),µ Uc ε = dist Sp = {| − || ∈ Sp ∈ } > 0 2 2 (cid:0) (cid:1) b A b a < ε λ (b) Now take ∈ sa with k − k 2 and suppose for ontradi tion that there exists a ∈ Sp with B (λ) (a) = ε ∩Sp ∅ B (λ) ε > 0 λ µ B (λ) µ / (a) ε ε/4 Here denotes the ball of radius and enter . Let ∈ . Then ∈ Sp and 3ε (µ a) 1 1 = sup µ α 1 α (a) 1 = µ, (a) − − − − k − k {| − | | ∈ Sp } dist Sp ≥ 4 (cid:0) (cid:1) Furthermore ε ε (λ b) (µ a) λ µ + a b < + (µ a) 1 1 − − k − − − k ≤ | − | k − k 4 2 ≤ k − k λ b 17.3 So − is a tually invertible whi h is a ontradi tion, see [17, Proposition ℄. Hen e for λ (b) ∈ Sp we annot have B (λ) (a) = ε ∩Sp ∅ ε (b) U (b) U Bb e aAuse of thebwaay t<heε/2was hosen we on lude that Sp ⊆ . Thus Sp ⊆ for an(cid:3)y sa ∈ with k − k t [0,1] ε > 0 [ ε,ε] 0 Proof. of Lemma 3.3. Let ∈ . Choose an su h that the interval − is in luded π(B ) in the resolvent set of t0 . Now π(B ) ( , ε) (ε, ) Sp t0 ⊆ −∞ − ∪ ∞ t π(B ) δ > 0 (cid:0) (cid:1) t By Lemma 3.4 and the ontinuity of 7→ there is a su h that π(B ) ( , ε) (ε, ) t Sp ⊆ −∞ − ∪ ∞ (cid:0) (cid:1) 8 J. KAAD,R. NEST, A. RENNIE t (t δ,t +δ) [0,1] t (t δ,t +δ) [0,1] 0 0 0 0 for all ∈ − ∩ . So for all ∈ − ∩ we have the identity χ π(B ) = f π(B ) t t f (cid:0) (cid:1) (cid:0) (cid:1) f 1 where issome(cid:28)xed ontinuous fun tion(forinstan e the fun tion fromtheproof ofLemma 3.2). But the fun tion t f π(B ) t 7→ (cid:3) (cid:0) (cid:1) is learly ontinuous and the lemma is thereby proved. K (J) 0 With these tools at hand we an now de(cid:28)ne spe tral (cid:29)ow as a lass in . t B t sa De(cid:28)nition 3.5 (Spe tral (cid:29)ow). Let 7→ be a norm ontinuous path in F . By Lemma 3.3 the path t π χ(B ) = χ π(B ) t t 7→ 0 = t < t < ... < t = 1 (cid:0) 0 (cid:1)1 (cid:0) n(cid:1) is norm ontinuous. Find a partition su h that π χ(B ) π χ(B ) < 1/2 t,s [t ,t ] t s i 1 i k − k for all ∈ − p = χ(B ) (cid:0) (cid:1) (cid:0) (cid:1) B Set i ti . We now de(cid:28)ne the spe tral (cid:29)ow of the path { t} to be n B = (1 p ) p (1 p ) p K (J) t i i 1 i 1 i 0 sf{ } − ∩ − − − − ∩ ∈ i=1 X(cid:2) (cid:3) (cid:2) (cid:3) This de(cid:28)nition raises several questions whi h we will answer in the following lemmas. p p p Np (p p ) i 1,...,n i i 1 i i 1 i i 1 (1) Are the elements − ∈ − - − -Fredholm operators for all ∈ { } ? (2) Is the spe tral (cid:29)ow independent of the partition hosen ? B t (3) Is the spe tral (cid:29)ow invariant under homotopies of the path { } ? B C B C J t t t t (4) Is the spe tral (cid:29)ow of { } equal to the spe tral (cid:29)ow of { } if − ∈ for all t [0,1] ∈ ? p,q N π(p) π(q) < 1 Lemma 3.6. Suppose that ∈ are two proje tions su h that k − k . Then qp qNp (q p) (1 q) p J ∈ is a - -Fredholm operator. Thus, by Lemma 2.4, we have − ∩ ∈ and (1 p) q J − ∩ ∈ . Proof. The inequality π(pqp) π(p) π(p) π(q) < 1 k − k ≤ k − k π(pqp) π(pNp) T pNp π(Tpqp) = shows that is invertiblein , so there is an operator ∈ su h that π(p) . Likewise the inequality π(qpq) π(q) π(q) π(q) < 1 k − k ≤ k − k π(qpq) π(qNq) R qNq π(qpqR) = sπh(oqw) s that is iqnpvertib(leqipn) , so there is an operator ∈ su h that (cid:3) . It follows that is a - -Fredholm operator. B 0 = t < t < ... < t = 1 t sa 0 1 n Corollary 3.7. For a path { } in F and a partition su h that π χ(B ) π χ(B ) < 1/2 t,s [t ,t ] t s i 1 i k − k for all ∈ − (cid:0) (cid:1) (cid:0) (cid:1) KK -THEORY AND SPECTRAL FLOW IN VON NEUMANN ALGEBRAS 9 i 1,...,n (p p ) i i 1 for all ∈ { } we an express the spe tral (cid:29)ow of the path as the sum of - − -indi es n B = (p p ) sf{ t} Ind(pi-pi−1) i i−1 i=1 X p = χ(B ) i 0,...,n where i ti for all ∈ { }. Thus by Theorem 2.8 we a tually have B = (p ...p ) = [N(p ...p ) p ] [N(p ...p ) p ] sf{ t} Ind(pn-p0) n 0 n 0 ∩ 0 − 0 n ∩ n p,q,r N Lemma 3.8. Suppose that are three proje tions in with π(p) π(q) < 1/2 , π(q) π(r) < 1/2 π(r) π(p) < 1/2 k − k k − k and k − k then (rq)+ (qp) = (rp) (r q) (q p) (r p) Ind - Ind - Ind - Thus the spe tral (cid:29)ow is independent of the partition hosen -it doesn't hange if a (cid:28)ner one is hosen. Proof. We want to prove that (rq)+ (qp) (rp) = 0 (r q) (q p) (r p) Ind - Ind - −Ind - By Theorem 2.8 this amounts to show that (rqpr) = 0 (r r) Ind - Verify the inequality π(rqpr) π(r) π(qp) π(r) k − k ≤ k − k π(qp) π(q) + π(q) π(r) ≤ k − k k − k π(p) π(q) + π(q) π(r) ≤ k − k k − k < 1 t [0,1] Let ∈ , then π (1 t)rqpr+tr π(r) = (1 t) π(rqpr) π(r) < (1 t) k − − k − k − k − π (1 t)rqp(cid:0)r + tr (cid:1) π(rNr) t [0,1] thus − is invertible in for all ∈ . This means that the path t (1 t)rqpr+tr (r r) rqpr r 7→ (cid:0)− on(cid:1)sists entirely of - -Fredholm operators and it onne ts with . To (cid:28)nish the proof we simply refer to Theorem 2.7 whi h gives 0 = (r) = (rqpr) (r r) (r r) Ind - Ind - (cid:3) as desired. B C J t t Lemma 3.9. [2, 23℄ Let { } and { } be two paths of selfadjoint -Fredholm operators. Let H : [0,1] [0,1] B C sa t t × → F be a homotopy onne ting { } and { } leaving the endpoints (cid:28)xed. H H(t,0) = B H(t,1) = C t [0,1] H(0,s) = B t t 0 Thatis isnorm- ontinuouswith , for all ∈ and , H(1,s) = B s [0,1] B = C B = C B = C 1 0 0 1 1 t t for all ∈ . In parti ular and . Then sf{ } sf{ }. 10 J. KAAD,R. NEST, A. RENNIE ζ : [0,1] [0,1] N/J Proof. The map × → de(cid:28)ned by ζ(t,s) = π χ H(t,s) (cid:16) (cid:17) (cid:0) (cid:1) is ontinuous and thus uniformly ontinuous, so we an hoose a grid 0 = t < t ... < t = 1 , 0 = s < s ... < s = 1 0 1 n 0 1 n [0,1] [0,1] (t,s),(u,v) [t ,t ] [s ,s ] ζ(t,s) ζ(u,v) < 1 of × su h that for any ∈ i−1 i × j−1 j we have k − k 2 i,j 1,...,n where ∈ { } are (cid:28)xed. i,j 1,...,n Now look at the spe tral (cid:29)ow along the borders of the squares. That is, for ∈ { } J there are eight paths of selfadjoint -Fredholm operators. For instan e we have u H (1 u)t +ut ,s i 1 i j 1 7→ − − − (cid:0) (cid:1) as one of them. The spe tral (cid:29)ow of this path will be denoted by (t ,s ),(t ,s ) H i 1 j 1 i j 1 sf − − − (cid:0) (cid:1) Likewise for the spe tral (cid:29)ow of the other paths. Applying Lemma 3.8 and the de(cid:28)nition of spe tral (cid:29)ow gives (t ,s ),(t ,s ) + (t ,s ),(t ,s ) H i 1 j 1 i j 1 H i j 1 i j sf − − − sf − + (t ,s ),(t ,s ) + (t ,s ),(t ,s ) = 0 (cid:0) H i j i 1 (cid:1)j (cid:0)H i 1 j i (cid:1)1 j 1 sf − sf − − − (cid:0) (cid:1) (cid:0) (cid:1) Furthermore sf (t ,s ),(t ,s ) = sf (t ,s ),(t ,s ) H i 1 j 1 i j 1 H i j 1 i 1 j 1 − − − − − − − (cid:3) And an easy ombinato(cid:0)rial argument yields(cid:1)the result(cid:0). (cid:1) p,q N p q < 1 Remark 3.10. Suppose that ∈ are two proje tions with k − k , then (p) (q) = 0 = (q) (p) Ker ∩Im Ker ∩Im J so the -index of the proje tions (pq) = [(1 p) q] [(1 q) p] = 0 (pq) Ind - − ∩ − − ∩ 1 p+pqp N To see this we start by dedu ing that − is invertible in from the inequality p pqp p q < 1 k − k ≤ k − k x (q) (p) If now is in Ker ∩Im we immediately have (1 p+pqp)x = 0 − 1 p + pqp x = 0 (q) (p) = 0 but − was invertible so . Therefore Ker ∩ Im . To prove that (p) (q) = 0 p q Ker ∩Im simply inter hange and . B C J B t t t Lemma 3.11. Let { } and { } be two paths of self adjoint -Fredholm operators with − C J t [0,1] t ∈ for all ∈ and (p q ) = (q p ) = 0 Ind(p0-q0) 0 0 Ind(q1-p1) 1 1 p = χ(B ) p = χ(B ) q = χ(C ) q = χ(C ) B = C 0 0 1 1 0 0 1 1 t t where , , and . Then sf{ } sf{ }. The ondition (3.11) is true if for instan e χ(B ) χ(C ) < 1 χ(C ) χ(B ) < 1 0 0 1 1 k − k and k − k

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.