ebook img

Investigation, prediction and control of rubber friction ans stick-slip PDF

198 Pages·2012·6.29 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Investigation, prediction and control of rubber friction ans stick-slip

Investigation, Prediction and Control of Rubber Friction and Stick-Slip: Experiment, Simulation, Application Fakultät für Maschinenbau der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des akademischen Grades DOKTOR-INGENIEUR (Dr- Ing.) genehmigte Dissertation von Diplom-Physiker Leif Busse geboren am 26.10.1968, in Reinbek (2012) 1. Referent: Prof. Dr.-Ing. Gerhard Poll 2. Referent: Prof. Dr.-Ing. Jörg Wallaschek 3. Referent: PD Dr. rer. nat. Manfred Klüppel Vorsitzender: Prof. Dr.-Ing. Bernd-Arno Behrens Tag der Promotion: 2012-07-31 Zusammenfassung/ Abstract 3 Zusammenfassung In dieser Arbeit werden neuartige Methoden zur Analyse und Beeinflussung von Gummireibung und dabei auftretendem Stick-Slip mit Hilfe von Oberflächenmodifikationen untersucht. Die Verbindung von Elastomeren, wie sie in Reifen, Schuhen, Scheiben- wischblättern oder Dichtungsringen verwendet werden, mit harten Oberflächen wie Straßen, Fußböden, Glasscheiben oder Metallbauteilen macht Verständnis, Vorhersage und Steuerung von Kontaktmechanik und Reibung unabdingbar. Reibung zu verstehen bedeutet, die Wechselwirkung von Materialeigenschaften, Oberflächeneigenschaften und Schmierstoffen zu verstehen. Voraussetzung für eine mathematische Beschreibung der Reibphänomene ist eine fraktale Sichtweise der Substratflächen. Basierend auf einem von Klüppel & Heinrich (2000) nach der Greenwood- Williamson-Theorie aufgestellten Modell mit einer Erweiterung auf bifraktale Skalenbereiche, lassen sich sowohl Hysteresereibung als auch der adhäsive Anteil beschreiben, die für Reibung unter nassen und trockenen Bedingungen stehen. Durch Simulationsrechnungen werden neben Reibwerten noch weitere Kontaktparameter gewonnen und in dieser Arbeit vorgestellt. Zu den Materialdaten des Modells gehören die viskoelastischen Eigenschaften der Gummisorten inklusive ihrer Relaxationszeitspektren. Da Reibung bedeutend von den systemeigenen Parametern bestimmt wird, was auch die Temperatur einschließt, spielen diese viskoelastischen Gummieigenschaften eine entscheidende Rolle bei der Beschreibung und damit auch der Simulation von Reibungssystemen. Viskoelastizität, die letztlich mittels des Zeit-Temperatur-Superpositionsprinzips von der Temperatur bestimmt wird, darf über die viskoelastischen Verschiebungsfaktoren, die man aus der dynamisch-mechanischen Analyse erhält, als mit der Reibungsgeschwindigkeit verknüpft gelten. Deshalb korrelieren hohe Frequenzen beim Verhalten des Gummis mit niedrigen Temperaturen. Dieselben Verschiebungsfaktoren werden in dieser Arbeit auf die experimentell ermittelten Reibkurven für rußgefülltes NR, S-SBR und EPDM auf nassem und trockenem Granit innerhalb eines Intervalls von Reibgeschwindigkeiten für verschiedene Temperaturen angewandt, um daraus zusammenhängende Reibmasterkurven über einen extrem großen Geschwindigkeitsintervall zu bilden. Diese gemessenen Masterkurven werden diskutiert und mit der simulierten Hysterese- und Adhäsionsreibung verglichen. Weitere Experimente zielten darauf, Reibung zu reduzieren und in kritischen Systemen das Entstehen von unerwünschten Stick-Slip-Effekten zu verhindern. Zwei verschiedene Techniken kamen dabei zum Einsatz: Zunächst wird eine Methode präsentiert, die harte 4 Zusammenfassung/ Abstract Aluminium-/Silicananostrukturen auf der Elastomeroberfläche erzeugt. Durch geeignete Präparation werden Partikel aus hyperverzweigtem Polyalkoxysiloxan (PAOS) an der Gummioberfläche gebildet. Der Einfluss der Menge an Al O /PAOS-Dispersion, des 2 3 Füllgrads von Ruß und der Temperdauer auf den Reibkoeffizienten wird über einen großen Geschwindigkeitsbereich hinweg erforscht. Experimente mit und ohne Lubrikanten wurden durchgeführt und in Hinblick auf Material- und Oberflächeneigenschaften der Proben diskutiert. Es stellt sich heraus, dass eine hinreichende Menge an PAOS eine nennenswerte Absenkung der Reibung bewirken und Stick-Slip-Phänomene unterbinden kann. Zum anderen wurden SBR- und EPDM-Proben unterschiedlicher Oberflächenstrukturen, mit wie auch ohne Rußfüllung, mit verschiedenen Arten von Polymeren (PU, TPU, PTFE, Polysiloxan) beschichtet und untersucht, und zwar auf besonders glatten Substratflächen wie Glas, poliertem Stahl und lackierten Blechen. Es wird gezeigt, wie durch Probenbeschichtung die Reibung nennenswert abgesenkt wird, gefolgt von einer umfangreichen Analyse des Stick-Slip-Aspekts, in einem weiten Parameterraum unter besonderer Berücksichtigung der Einwirkung von Druck und Temperatur. Schließlich wird noch die Frage aufgeworfen, inwieweit das Reibmodell auf Simulationen für beschichtete Proben und beschichtete Substrate übertragen werden kann. Schlagwörter: Gummireibung, Stick-Slip, Oberflächenmodifikation Abstract In this work, novel methods of analyzing and controlling rubber friction and stick-slip effects by means of surface modification shall be investigated. The interaction of elastomers like in tyres, shoes, wiper blades or seals with hard surfaces like roads, floors, glass or metal parts makes the understanding, prediction and control of contact mechanics and friction indispensible. Understanding friction means understanding the interaction of material properties, surface properties and lubricant. A fractal point of view for the substrate surfaces becomes the prerequisite of a mathematical description of friction phenomena. Based on a model by Klüppel & Heinrich (2000) according to the Greenwood-Williamson theory and expanded to bifractal scaling ranges, hysteresis friction as well as adhesion contributions can be described, representing wet and dry lubrication conditions. Additionally to friction, other contact parameters are gained by simulations and also presented in this work. Zusammenfassung/ Abstract 5 Part of the material data for the model are the viscoelastic properties of the rubber, including relaxation time spectra. As friction strongly depends on its system parameters, including temperature, these viscoelastic properties of rubber play a major role in describing and thus simulating friction systems. Defined by temperature using the time temperature superposition principle, viscoelasticity can be assumed to be connected to friction velocity via the viscoelastic shift factors gained from dynamic mechanical analysis. Thus, high frequencies correlate with low temperatures for rubber behaviour. In this work, these shift factors are applied to experimental friction curves for carbon black filled NR, S-SBR and EPDM rubber on wet and dry granite for various temperatures in order to form continuous friction master curves over are extremely large velocity interval. These measured master curves are discussed and compared to simulated hysteresis and adhesion friction. Further experiments were conducted to reduce friction and prevent critical systems from exhibiting unwanted stick-slip effects. Two different techniques are employed to achieve this goal: First, a method of implementing hard alumina/silica nanostructures into the elastomer surface is presented. With appropriate preparation, particles of hyperbranched polyalkoxysiloxane (PAOS) are formed on the rubber surface. The influence of variable amounts of Al O /PAOS dispersion, variable amounts of carbon black fillers and annealing 2 3 time on the friction coefficient is studied for a large velocity range. Experiments were conducted with and without lubricant and discussed with respect to material and surface properties of the samples. It is found that sufficient PAOS concentrations cause a considerable decrease of friction for all systems and prevent stick-slip phenomena. Subsequently, SBR and EPDM samples with varying surface structures, filled with and without carbon black, were coated with several kinds of polymer (PU, TPU, PTFE, polysiloxane) and tested on especially smooth substrates like glass, polished steel and varnished metal sheets. It is shown how coating the samples significantly reduces friction, and an extensive analysis of the stick-slip aspects in a wide parameter range is given, with special respect on the influence of pressure and temperature. Finally, the question is investigated whether the contact model can be transferred to simulations of coated samples and coated substrates. Keywords: rubber friction, stick-slip, surface modification 6 Table of Content Zusammenfassung ................................................................................................................ 3 Abstract ................................................................................................................................. 4 Table of Content .................................................................................................................... 6 Abbreviations & Variables ..................................................................................................... 9 1 Introduction ...................................................................................................................13 1.1 Importance of Elastomer Friction ............................................................................13 1.2 Motivation and Agenda of this Work .......................................................................14 1.3 State of the Art .......................................................................................................17 2 Theory of Elastomer Friction on Rough Surfaces ..........................................................21 2.1 Basic Elastomer Mechanics ...................................................................................21 2.2 Time-Temperature-Superposition ...........................................................................26 2.3 Relaxation Time Spectra ........................................................................................30 2.4 Contact Theory .......................................................................................................31 2.5 Self Affinity and Surface Parameters ......................................................................36 2.6 Hysteresis Friction ..................................................................................................40 2.7 Adhesion Friction ...................................................................................................43 2.8 Modelling ................................................................................................................45 3 Experimental Methods & Materials ................................................................................46 3.1 Preparation ............................................................................................................46 3.1.1 Mixing .............................................................................................................46 3.1.2 Vulcanization ...................................................................................................49 3.1.3 Annealing ........................................................................................................50 3.1.4 Sample Shaping ..............................................................................................51 3.1.5 Coating ...........................................................................................................51 3.2 Surface Characterization ........................................................................................53 3.2.1 Profile Measurements .....................................................................................53 3.2.2 Morphology .....................................................................................................54 3.2.3 Chemical Analysis ...........................................................................................55 3.2.4 Surface Tension ..............................................................................................56 3.3 Material Testing ......................................................................................................57 3.3.1 Shore Hardness ..............................................................................................57 3.3.2 Rebound .........................................................................................................57 3.3.3 Tensile Test ....................................................................................................57 3.3.4 Abrasion ..........................................................................................................58 3.4 Dynamic-Mechanical Analysis (DMA) .....................................................................59 7 3.5 Friction Measurements ...........................................................................................61 3.5.1 Tribometer .......................................................................................................61 3.5.2 Universal Testing Machine ..............................................................................65 3.6 Substrates ..............................................................................................................67 3.6.1 Classification ...................................................................................................67 3.6.2 Surface Parameters ........................................................................................67 3.7 Elastomer Samples ................................................................................................72 3.7.1 Chosen Types of Elastomers ..........................................................................72 3.7.2 Reinforcing Fillers ...........................................................................................73 3.7.3 PAOS ..............................................................................................................75 3.7.4 Types of Coating .............................................................................................76 4 Results of Measurements and Simulations ....................................................................78 4.1 Elastomer Characteristics ......................................................................................78 4.1.1 Surface Properties ..........................................................................................79 4.1.2 Mechanical Properties .....................................................................................87 4.1.3 Viscoelastic Properties and Shift Factors ........................................................88 4.1.4 Relaxation Time Spectra .................................................................................95 4.2 Friction Plateaus of Silica Filled Systems ...............................................................98 4.2.1 From Wet Friction to the Silica Plateaus of Dry Friction ...................................98 4.2.2 Fit Parameters and Contact Simulation ......................................................... 101 4.2.3 Simulation Functions ..................................................................................... 103 4.3 Verifying the Friction Model by Friction Master Curves ......................................... 107 4.3.1 Measurement with Lubricant and Simulation of the Hysteresis Friction ......... 107 4.3.2 Friction Measurements on Dry Substrate and Adhesion Simulation .............. 109 4.3.3 Simulation Parameters for Friction Master Curves ........................................ 111 4.4 Parameter Dependence of the Simulation of Contact Variables ........................... 114 4.4.1 True Contact Area ......................................................................................... 115 4.4.2 Gap Distance ................................................................................................ 117 4.4.3 Penetration Depth ......................................................................................... 118 4.4.4 GW Ratio ...................................................................................................... 119 4.4.5 Hysteresis Friction ......................................................................................... 120 4.5 Reduction of Friction by Surface Modification ....................................................... 124 4.5.1 General Explanations on Graphical Friction Results ...................................... 124 4.5.2 Tribology and Diminished Friction by Sample Induction with PAOS .............. 126 4.5.3 Decreasing Friction and Stick-Slip by Coating ............................................... 132 4.5.4 Influence of Environmental Parameters on the Friction of Coated Samples .. 144 4.5.5 Simulation of the Friction on Smooth Substrates ........................................... 150 8 4.6 Stick-Slip and Instabilities ..................................................................................... 157 4.6.1 Layer Stability and Start Peaks ..................................................................... 157 4.6.2 Definition and Evaluation of Stick-Slip ........................................................... 163 4.6.3 Analysis of the Stick-Slip Effects ................................................................... 167 5 Final Considerations .................................................................................................... 181 5.1 General Discussion .............................................................................................. 181 5.2 Summary .............................................................................................................. 184 5.3 Possible Applications ........................................................................................... 188 5.4 Outlook................................................................................................................. 189 Literature ............................................................................................................................ 190 List of Tables ...................................................................................................................... 195 Acknowledgement .............................................................................................................. 196 Curriculum Vitae ................................................................................................................. 198 Abbreviations & Variables 9 Abbreviations & Variables Abbreviations AFM atomic force microscopy CB carbon black COF coefficient of friction: µ DIAS dispersion index analysis system DMA dynamic mechanical analysis EDX energy dispersive X-ray spectroscopy EPDM ethylene propylene dien monomer GW Greenwood-Williamson HD height distribution HDC height difference correlation MC master curve NR natural rubber NBR nitrile butadiene rubber PAOS polyalkoxysiloxane PSD power spectral density PTFE polytetrafluorethylene PU polyurethane RT room temperature (20°C for TTS, 23°C for other testings) RTS relaxation time spectrum SBR styrene butadiene rubber (S-SBR: polymerized in solution) SEM scanning electron microscopy SHD summit height distribution SSE stick-slip effect TPU thermoplastic polyurethane TTS time temperature superposition WLF Williams-Landel-Ferry XPS X-ray photoelectron spectroscopy 10 Abbreviations & Variables Latin Variables < > averaged value A nominal contact area 0 A real contact area c A contact area in Greenwood Williamson model GW A contact area in Hertz model Hz a contact radius in Hertz model Hz a horizontal shift factors T b fit factor of hysteresis friction b sample width 0 C , C WLF constants for horizontal shifting 1 2 C height difference correlation function z d gap distance d sample thickness 0 D mesoscopic fractal dimension 1 D microscopic fractal dimension 2 D fractal dimension f E' storage modulus (elastic modulus) E'' loss modulus (elastic modulus) E static storage modulus 0 E maximal storage modulus ∞ E activation energy a E dissipated energy diss F , F , F Greenwood-Williamson functions 0 1 3/2 F normal force on sample N F friction force fric f frequency f spatial frequency s f minimal spatial frequency smin f vertical shift factors V G' storage modulus (shear modulus) G'' loss modulus (shear modulus) h height of asperity h sphere distance in Hertz model Hz H Hurst exponent H() relaxation time spectrum function

Description:
described, representing wet and dry lubrication conditions. conducted with and without lubricant and discussed with respect to material and surface.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.