ebook img

Inhibition of Mammalian Glycoprotein YKL-40 IDENTIFICATION OF THE PHYSIOLOGICAL LIGAND PDF

14 Pages·2017·2.39 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Inhibition of Mammalian Glycoprotein YKL-40 IDENTIFICATION OF THE PHYSIOLOGICAL LIGAND

crossmark THEJOURNALOFBIOLOGICALCHEMISTRY VOL.292,NO.7,pp.2624–2636,February17,2017 ©2017byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PublishedintheU.S.A. Inhibition of Mammalian Glycoprotein YKL-40 IDENTIFICATIONOFTHEPHYSIOLOGICALLIGAND*□S Receivedforpublication,October26,2016,andinrevisedform,December22,2016 Published,JBCPapersinPress,January4,2017,DOI10.1074/jbc.M116.764985 AbhishekA.KognoleandX ChristinaM.Payne1 FromtheDepartmentofChemicalandMaterialsEngineering,UniversityofKentucky,Lexington,Kentucky40506 EditedbyGeraldW.Hart YKL-40 is a mammalian glycoprotein associated with pro- easesandamultitudeofcancers(1–4).Manydifferenttypesof gression,severity,andprognosisofchronicinflammatorydis- cellsincludingsynovial,endothelial,epithelial,smoothmuscle, easesandamultitudeofcancers.Despitethiswelldocumented andtumorcellsproduceYKL-40invivo,likelyinresponseto association, identification of the lectin(cid:3)s physiological ligand environmentalcues(5–8).Speculationastobiologicalfunction and,accordingly,biologicalfunctionhasprovenexperimentally ofYKL-40variesfrombothinhibitingandantagonizingcolla- difficult. YKL-40 has been shown to bind chito-oligosaccha- genfibrilformationasaresultofinjuryordisease(9),aswellas rides;however,theproductionofchitinbythehumanbodyhas conferringdrugresistanceandincreasingcellmigrationlead- notyetbeendocumented.Possiblealternativeligandsinclude ing to progression of cancer (3), and protection from chitin- proteoglycans, polysaccharides, and fibers like collagen, all of containingpathogens(10).AlthoughtheassociationofYKL-40 whichmakeuptheextracellularmatrix.ItislikelythatYKL-40is withphysicalmaladiesiswelldocumented,identificationofthe interacting with these alternative polysaccharides or proteins physiologicalligandofthislectin,andthusbiologicalfunction, withinthebody,extendingitsfunctiontocellbiologicalroles remainselusive. such as mediating cellular receptors and cell adhesion and Mammalian YKL-40 is classified as a family 18 glycoside migration.Here,weconsiderthefeasibilityofpolysaccharides, hydrolase based on high homology with this well conserved including cello-oligosaccharides, hyaluronan, heparan sulfate, classofenzymesintheCAZydatabase(10–12).Althoughsim- heparin,andchondroitinsulfate,andcollagen-likepeptidesas ilarinstructuretofamily18glycosidehydrolases,YKL-40lacks physiologicalligandsforYKL-40.Weusemoleculardynamics catalyticactivityasaresultofsubstitutionoftheglutamicacid simulationstoresolvethemolecularlevelrecognitionmecha- andasparticacidmotiftypicalofcatalyticallyactivefamily18 nismsandcalculatethefreeenergyofbindingthehypothesized hydrolases, rendering YKL-40 a lectin, a non-catalytic sugar- ligandstoYKL-40,addressingthermodynamicpreferencerela- binding protein. Structural evidence suggests that YKL-40 tive to chito-oligosaccharides. Our results suggest that chito- exhibitsatleasttwofunctionalbindingregions(10).Thepri- hexaoseandhyaluronanpreferentiallybindtoYKL-40overcol- mary binding cleft has nine binding subsites lined with aro- lagen, and hyaluronan is likely the preferred physiological maticresiduescompatiblewithcarbohydratebinding(Fig.1).A ligand, because the negatively charged hyaluronan shows putativeheparin-bindingsite,locatedwithinasurfaceloop,has enhancedaffinityforYKL-40overneutralchitohexaose.Colla- alsobeensuggested(Fig.1),althoughinvitrobindingaffinity gen binds in two locations at the YKL-40 surface, potentially studieshavebeenunabletoconclusivelydemonstratethis(11). relatedtoaroleinfibrillarformation.Finally,heparinnon-spe- Binding affinity and structural studies reveal that chito- cificallybindsattheYKL-40surface,aspredictedfromstruc- oligosaccharidesarenaturalsubstrates(6,10,11).Inlinewith turalstudies.Overall,YKL-40likelybindsmanynaturalligands family 18 glycoside hydrolases, YKL-40 uniquely binds short in vivo, but its concurrence with physical maladies may be andlongchito-oligomers,indicatingpreferentialsiteselection relatedtoassociatedincreasesinhyaluronan. basedonaffinity(10).Chitohexaosebindinghasalsobeenpur- ported to induce conformational changes in YKL-40 (10), although this has not been observed in all structural studies YKL-40, also known as chitinase 3-like 1, is a mammalian (11). Lectin binding niches are widely believed to be “pre- glycoprotein implicated as a biomarker associated with pro- formed” to the preferred ligand, exhibiting little conforma- gression,severity,andprognosisofchronicinflammatorydis- tionalchangeuponbinding(13,14).Despiteapparentaffinity, chitinisnotanaturalbiopolymerwithinmammalianorbacte- *ThisworkwassupportedbyKentuckyScienceandEngineeringFoundation rialcells,andthepresenceofchitinorchito-oligosaccharidesin Grant KSEF-148-502-13-307). Computational time for this research was mammals is likely related to fungal infection (15). The noted providedbytheExtremeScienceandEngineeringDiscoveryEnvironment (83), which is supported by National Science Foundation Grant ACI- up-regulation of YKL-40 in response to inflammation lends 1053575underAllocationMCB090159.Theauthorsdeclarethattheyhave credencetotheargumentthatYKL-40functionsaspartofthe noconflictsofinterestwiththecontentsofthisarticle. □S This article contains supplemental text, Tables S1–S6, Figs. S1–S8, and innateimmuneresponseinrecognitionofselffromnon-self(6, MoviesS1–S3. 16); however, high expression levels of YKL-40 in carcinoma 1To whom correspondence should be addressed: Dept. of Chemical and tissues suggest function beyond the innate immune response MaterialsEngineering,UniversityofKentucky,177F.PaulAndersonTower, mayalsoexist(17,18).Theextracellularmatrixiscomprisedof Lexington, KY 40506. Tel.: 859-257-2902; Fax: 859-323-1929; E-mail: [email protected]. a mesh of proteoglycans (protein-attached glycosaminogly- This is an Open Access article under the CC BY license. 2624 JOURNALOFBIOLOGICALCHEMISTRY VOLUME292•NUMBER7•FEBRUARY17,2017 IdentifyingthePhysiologicalLigandofYKL-40 therconfoundsthequestionofmechanismwhenconsidering physiological ligands, because YKL-40 is capable of binding bothproteinandcarbohydrates. UnderstandingthemechanismandaffinitybywhichYKL-40 bindsligandsiscrucialtoourunderstandingofitsphysiological function.Thisknowledgewillserveasafoundationforfuture campaigns toward rational development of a potent antago- nistsenablingcellbiologicalstudyandaddressingYKL-40asa therapeutictarget.Toaccomplishthisgoal,wemustdescribe the molecular level mechanisms governing the interaction of YKL-40 with both polysaccharide and collagen-like polypep- tidesandquantitativelyevaluateaffinity.Inthisstudy,weused FIGURE1.SurfacerepresentationofYKL-40showingthebindingcleft classicalmoleculardynamics(MD)2simulationstodifferenti- withaboundhexamerofchitin.Bindingsites(cid:2)2through(cid:3)4arenum- ate modes of ligand recognition and specificity. Using free bered.Sites(cid:3)5,(cid:3)6,and(cid:3)7havealsobeenidentifiedbutarenotshown.The putativeheparin-bindingsiteisshowninblue. energyperturbationwithreplicaexchangemoleculardynamics (FEP/(cid:2)-REMD)andumbrellasamplingMD,wequantitatively cans),polysaccharides,andfibersincludingcollagen.Analter- determinedaffinitiesovercomingtheexperimentaldifficulties nate theory to the pathogenic protection function is that a encounteredthusfar.Asphysiologicalligands,weconsidered closelyrelatedpolysaccharide,insteadofchitin,playstheroleof several options within both the polysaccharide and proteina- thephysiologicalligandinmediatingcellularfunction(11). ceous classes. Below, we provide a brief description of each Despitethestructuralsimilaritybetweenchito-oligosaccha- carbohydrateligandconsidered,aswellasjustificationforcon- ridesandtheproteoglycancarbohydratemonomers,littleevi- siderationofthecollagen-likemodels. denceofpolysaccharidebindingbeyondtheoriginalstructural Polysaccharides—Weselectedpolysaccharidesforthisstudy studiesexists(10,11).Infact,weareawareofonlyoneother basedontheirsimilaritytochito-oligomers,aswellasnatural studyfocusingonthemolecular-levelmechanismofcarbohy- occurrence in mammalian cell walls and/or the extracellular dratebindinginYKL-40(19).Fromabioinformaticsandstruc- matrix. The chito-oligomer from structural studies was turalcomparisonofYKL-40toasimilarchi-lectin,mammary included as a control (10, 11). Chitin is a naturally occurring glandprotein40(20),theauthorsproposeanoligosaccharide biopolymer comprised of repeating N-acetyl-D-glucosamine bindingmechanismthatinvolvestryptophan-mediatedgating (GlcNAc)monomericunitsconnectedby(cid:3)-1,4-glycosidiclink- oftheprimarycarbohydratebindingsite(Fig.1)(19).However, ages(Fig.2).Thecentralringofthemonomer,asix-membered in lieu of a dynamics-based investigation, little can be con- pyranose,iscommontoanumberofcarbohydratesincluding cludedaboutthebindingmechanismofYKL-40ligandsother glucose. Given the chemical similarity, as well as the general thanchito-oligosaccharides,andconformationalchangesrela- presenceofglucoseinmammaliancellsasaformofenergy,a tivetobindingareinaccessible.Fromproteinpurificationtech- hexameric cello-oligomer was also examined as a potential niques, namely heparin-Sepharose chromatography, we also physiologicalligand,despiteitsunlikelypresenceamongmam- knowthatYKL-40reversiblybindsheparin(7,11,21);however, malianglycosaminoglycans. affinitydataforthisinteractiondonotexist.Basedontheinter- Asdescribedabove,YKL-40bindsheparin,andthus,likely action with heparin, it is reasonable to hypothesize heparan alsobindsheparansulfate.Heparansulfate,alesssulfatedform sulfateglycosaminoglycans,existingaspartoftheextracellular ofheparin,isapolysaccharidefoundinabundanceintheextra- matrix construct, are potential physiological ligands. Visual cellularmatrixandatthecellsurface(27).Heparansulfateis inspectionoftheproteinstructuresuggeststhatheparansul- constructed from a repeating disaccharide of (cid:3)-D-glucuronic fatefragmentsmaybeeasiertoaccommodatewithinthecar- acidandN-acetyl-(cid:4)-D-glucosamine(Fig.2).Ofalltheglycos- bohydrate-bindingsitethanheparinitself(11).Itfollowsthat aminoglycans,heparansulfateisthemoststructurallycomplex. otherstructurallysimilarcarbohydratefragmentswouldbind Atleast24differentcombinationsofthedisaccharidemono- withsimilaraffinityinacomparablemechanism. merexist,withdifferencesarisingasaresultofvariationinboth The association of YKL-40 with ailments such as arthritis, isomeranddegreeofsidechainsulfation(28).Additionally,the fibrosis,andjointdiseaseissuggestiveofmolecular-levelinter- heparan sulfate polysaccharide can exhibit both sulfated and actionswithconnectivetissueandthuscollagen(22–26).Moti- unsulfated domains. Physiologically, the unsulfated disaccha- vated by understanding the physiological role of YKL-40 in connectivetissueremodelingandinflammation,Biggetal.(9) ride(cid:3)-D-glucuronicacid(1,4)N-acetyl-(cid:4)-D-glucosamineisthe most prevalent form of heparan sulfate (28). Focusing on the investigatedassociationofYKL-40withcollagentypesI,II,and mostrelevantphysiologicalligands,weexaminedthefullysul- III using affinity chromatography to confirm binding to each fatedformheparinandtheunsulfatedformheparansulfate. type.TheauthorsreportYKL-40specificallybindstoallthree collagentypes.Additionally,theauthorsusedsurfaceplasmon resonancetoconfirmbindingtocollagentypeI.Unfortunately, thereportedaffinityconstantswereinconsistentacrossexper- 2The abbreviations used are: MD, molecular dynamics; PMF, potential of meanforce;FEP,freeenergyperturbation;REMD,replicaexchangemolec- imentsasaresultofaggregation.Nevertheless,theworkclearly ulardynamics;WCA,Weeks-Chandler-Anderson;RMSD,rootmeansquare indicatesthatYKL-40iscapableofbindingcollagen.Thisfur- deviation;RMSF,rootmeansquarefluctuation;PDB,ProteinDataBank. FEBRUARY17,2017•VOLUME292•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 2625 IdentifyingthePhysiologicalLigandofYKL-40 Gly-Xaa-Yaa repeating amino acid sequence (34). Generally, the unspecified amino acids, Xaa and Yaa, are proline and hydroxyproline,respectively. Modelcollagenpeptideshavebeenobservedintwodifferent symmetries:theoriginalRichandCrickmodelwith10/3sym- metry (10 units in 3 turns) and the 7/2 symmetry of a more tightly symmetrical triple helix (35–37). On the molecular scale,collagentypewillhaverelativelylittleimpactonbinding toYKL-40.However,symmetrymayhaveanimpactonhydro- genbondinginthebindingsite,andthus,overallaffinity,which will provide unique insight into physiological relevance. To date,modelcollagenpeptidesofatrue10/3symmetryhavenot been reported. Rather, the peptides either have a 7/2 helical pitch or are somewhat “intermediate” in symmetry leading sometobelievethatthe7/2symmetryisrepresentativeofthe true collagen helical structure (38). However, it is not known howuniversallytruethishypothesisisbecausethestructuresof model peptides capture just a small subsection of the larger macromolecularstructure(39). With a broad range of possible collagen architectures, we have selected four representative model collagen peptides FIGURE2.Monomericunitsofthepolysaccharidesconsideredaspoten- whosestructuresarebothavailablefromcrystallographicevi- tialphysiologicalligandsofYKL-40:cellohexaose,chitohexaose,hepa- dence and span the 10/3 and 7/2 symmetries to the greatest ransulfate,heparin,hyaluronan,andchondroitinsulfate.Thechito-oli- gomerisapolymerof(cid:3)-1,4-linkedGlcNAcmonomers.Heparansulfatewas possibleextent.Thefirstcollagenpeptideconsideredisthatof modeledasa(cid:3)-1,4,(cid:4)-1,4-linkedchainofGlcAandGlcNAc.Heparinwasrep- the basic collagen peptide model, PDB code 1CAG (40). The resentedasthe(cid:3)-1,4,(cid:4)-1,4-linkedoligomerofGlcAandGlcNS.Hyaluronan andchondroitinsulfateare(cid:3)-1,3,(cid:3)-1,4-linkedoligomers;theformerconsists reported1.9ÅresolutionstructureexhibitsasingleGlytoAla ofGlcAandGlcNAc,andthelatterconsistsofGlcAandGalNAc.GlcA,(cid:3)-D- substitution and 7/2 symmetry overall. Near the substitution glucuronicacid;IdoA,(cid:4)-D-iduronicacid;GlcNS,N-sulfo-(cid:4)-D-glucosamine;Gal- NAc,N-acetyl-(cid:3)-D-galactosamine. site,thehelixrelaxessomewhatfrom7/2symmetry,although notsomuchastochangeoverallsymmetry.Thesecondcolla- genmodelpeptideweconsiderisavariationofthe1CAGpep- Hyaluronan is a particularly interesting glycosaminoglycan tide, where we reverted the alanine substitution to its native relative to this study, because chito-oligosaccharides are pre- glycine.Minimizationofthisstructurereturnsthehelixtofull cursorstohyaluronansynthesisinvivo(29–31).Thestructural 7/2 symmetry; we refer to this peptide as “native 1CAG” relationshipofthesetwomoleculesissuchthatbindingmech- here. The third model represents a segment from type III anismsmaybesimilaratalternatingbindingsites.Hyaluronan homotrimercollagenwithapproximate10/3symmetryinthe is a polysaccharide of a repeating (cid:3)-D-glucuronic acid and middle part of the helix (PDB code 1BKV) (35). This middle N-acetyl-(cid:3)-D-glucosamine disaccharides connected by alter- part of the 1BKV model peptide, also referred as the T3–785 nating (cid:3)-1,3- and (cid:3)-1,4-glycosidic linkages (Fig. 2). As with peptide, has an imino acid-poor sequence of GITGARGLA. heparansulfate,hyaluronanisalsoaglycosaminoglycancom- Ourfourthmodel,1Q7D,isatriplehelicalcollagen-likepeptide prising the extracellular matrix. At extracellular pH, the car- sequence including a hexapeptide Gly-Phe-Hyp-Gly-Glu-Arg boxyl groups of glucuronic acid are fully ionized, giving the (GFOGER) motif in the middle (41); this motif is not suffi- ligand an overall negative charge under typical physiological ciently long to exhibit 10/3 symmetry, exhibiting, rather, an conditions(32). intermediatedegreeof7/2helicalsymmetry.This1Q7Dmodel Finally,weconsiderchondroitinsulfate,whichisalsoagly- isknowntobindtheintegrin(cid:4)2(cid:3)1-Idomainprotein(42),and cosaminoglycanprevalentinmammals.Theprimarystructural theGFOGERmotifisfoundinthe(cid:4)1chainoftypeIcollagen. unitsofchondroitinsulfatearearepeating(cid:3)-D-glucuronicacid and N-acetyl-(cid:4)-D-galactosamine disaccharides connected by ExperimentalProcedures alternating(cid:3)-1,3-and(cid:3)-1,4-glycosidiclinkages(Fig.2).Aswith MolecularDynamicsSimulations heparansulfate,chondroitinsulfateexistsinvariablysulfated types(33);wehaveselectedtheC4andC6sulfatedvariantof MD simulations were constructed starting from the chito- chondroitinsulfatepolysaccharideasamodel. hexaose-boundYKL-40structure(PDBcode1HJW)deposited Collagen-like Peptide Models—Collagen has also been con- byHoustonetal.(10).Theaposimulationsimplyremovedthe sideredasapotentialphysiologicalligandbasedonthenoted chito-oligomer from the primary binding cleft. The N-linked affinityandparticipationofYKL-40incollagenfibrilformation glycancapturedintheYKL-40structure,atAsn60,wasincluded (9).Collagen,unliketheotherpotentialphysiologicalligands,is in system preparation. Because crystal structures of YKL-40 amacromolecularproteinwithatriplehelixstructure.There boundtootherpolysaccharidesarenotavailable,weusedthe areatleast27distincttypesofhumancollagen,formingavari- structuralsimilarityofpolysaccharidesasthebasisformodel- etyofbiologicalnetworks,allofwhichareconstructedofabasic ingtheremainingpolysaccharidesinthisinvestigation.Inthe 2626 JOURNALOFBIOLOGICALCHEMISTRY VOLUME292•NUMBER7•FEBRUARY17,2017 IdentifyingthePhysiologicalLigandofYKL-40 FIGURE3.Molecularshapecomplementaritydockingcalculationspredictcollagen-likepeptideswillbindtoYKL-40intwopossibleorientations.a, thefrontviewofYKL-40(graysurface)withcollagendockedinsiteA(greenstick).b,thebackviewwherecollagenisdockedinsiteB(cyanstick).c,topviewof YKL-40illustratingrelativepositionsofbindingsites.Theputativeheparin-bindingsubsiteisshowninbluesurfacetoaidinvisualizationofrelativeorientation oftheprotein(cid:4)proteincomplexes.Thisparticularfigureshowstheintegrin-bindingcollagenpeptide,1Q7D(41),inthepredictedbindingsitesalongthesurface ofYKL-40;similardockingwascarriedoutforothercollagenmodels. caseofcellohexaose,hyaluronan,heparansulfate,heparin,and 300K using NAMD (51). Explicit procedural details are pro- chondroitin sulfate, we located the central ring atoms of the videdinthesupplementalmaterials. ligand backbone in the same location as that of the original chitohexaose.Appropriatepyranosesidechainsandglycosidic FreeEnergyCalculations linkages(Fig.2)wereaddedusingCHARMMinternalcoordi- FEP/(cid:2)-REMD—FreeenergyperturbationwithHamiltonian natetablestoconstructtheremainderofthesugarresidue(43). replicaexchangemoleculardynamics(FEP/(cid:2)-REMD)wasused AllpolysaccharidesweredescribedusingtheCHARMM36car- tocalculatetheabsolutefreeenergyofbindingthepolysac- bohydrateforcefield(44–46).Themissingforce-fieldparam- charideligandstoYKL-40(52,53).ThisprotocolusesHam- etersforN-sulfatedglucosamine(supplementalFig.S1)inhep- iltonianreplicaexchangeasameansofimprovingtheBoltz- arin were developed using the force-field Toolkit plugin for mannsamplingoffreeenergyperturbationcalculations.The VMD (47, 48). Details of this parameterization and output parallel/parallel replica exchange MD algorithm in NAMD parameters(supplementalTableS2)arereportedinthesupple- was implemented as recently described (51, 54). The free mentalmaterials. energy calculations performed using this approach were Construction of the collagen-bound YKL-40 models re- accomplished through two separate sets of free energy cal- quired docking calculations to appropriately position the culations following the thermodynamic cycle illustrated in ligand.Thecollagenpeptidesaresignificantlylargerthananyof supplemental Fig. S2. To obtain each binding free energy, thecarbohydrateligands;thus,itisunlikelythatacollagenmol- (cid:4)G,theboundcarbohydrateligandwasfirstdecoupledfrom ecule occupies the primary YKL-40 binding site in the same thesolvatedprotein(cid:4)carbohydratecomplextodetermine(cid:4)G . 1 manneraschito-oligomer.Standardaffinity-baseddockingcal- Thesecondcalculationentaileddecouplingthesolvatedoligo- culations, such as the ones performed in AutoDock, are not saccharidefromsolutionintovacuumtoobtain(cid:4)G .Thedif- 2 feasiblefordeterminationofaninitialcollagen-bindingdomain ferencebetweenthetwovalues,(cid:4)G (cid:3)(cid:4)G ,givestheabsolute 2 1 given the size and flexibility of the triple helix structures. freeenergyofbindingthegivenligandtoYKL-40. Rather, the collagen peptides were docked on the basis of Ineachfreeenergycalculation,fiveseparatetermscontrib- molecularshapecomplementarityusingtheonlinewebserver utetothepotentialenergyofthesystem:thenon-interacting PatchDockBetaversion1.3(49,50).Inthecaseofeachofthe ligandpotentialenergy,repulsiveanddispersivecontributions four collagen-like model peptides, PatchDock predicted two totheLennard-Jonespotential,electrostaticcontributions,and potentialoccupanciesalongthesurfaceofYKL-40,siteAand the restraining potential. In each calculation, the ligand was siteB.BindingsiteAcorrespondstotheprimarycarbohydrate- decoupled from the system by thermodynamic coupling binding domain of YKL-40; however, the collagen ligand was parameters controlling the non-bonded interaction of the notasdeeplyentrenchedinthecleftaschitohexaose.Binding ligand with the environment. The parameters decoupled the siteBislocatedontheoppositesideofYKL-40fromthepri- ligandinafour-stageprocess,whereinthecouplingparameters mary binding cleft. Thus, for each collagen-like peptide, two defined replicas that were exchanged along the length of the MDsimulationswereconstructedrepresentingthetwopoten- alchemical pathway. This decoupling has been described in tialbindingsites.Fig.3illustratestheresultsofthedockingwith detailpreviously(54)andisalsoreportedinthesupplemental predictedcollagenbindingsitesAandBforthe1Q7Dcollagen- materials.Atotalof128FEPreplicaswereused,andaconven- likemodelpeptide. tional Metropolis Monte Carlo exchange criterion governed Theconstructedprotein-ligandsystemswereminimizedin the swaps throughout the replica exchange process (53). The vacuumandsubsequentlysolvatedwithwaterandsodiumions. free energy of binding was determined from 20 consecutive, Using CHARMM (43), the solvated systems were extensively 0.1-ns simulations of each corresponding system, where the minimizedandheatedto300Kfor20ps,whichwasfollowedby first1nsofdatawerediscardedasequilibration.Onestandard MD simulation for 100 ps in the NPT ensemble. The coordi- deviationofthelast1nsofsimulationdatawereusedtoobtain nates following density equilibration were used as a starting anestimateoferror.Additionaldetailsaboutthesecalculations point for 250 ns of MD simulation in the NVT ensemble at aredescribedinthesupplementalmaterials. FEBRUARY17,2017•VOLUME292•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 2627 IdentifyingthePhysiologicalLigandofYKL-40 FIGURE4.RelaxationofthepolysaccharideligandsintheprimarybindingcleftofYKL-40.Eachligandisshownaftera100-psequilibrationinathickstick representation.Forcomparison,thechito-oligomer,initsequilibratedconformation,isshowninthingreenlinesbehindeacholigosaccharide.TheYKL-40 proteinhasbeenalignedsuchthateacholigosaccharideisorientedinthesamemanner;althoughYKL-40isnotshownforvisualclarity.Heparansulfate, heparin,andchondroitinsulfaterelaxsignificantlyfromtheinitialdistortedconformation. UmbrellaSampling—ConvergencechallengesmakeFEP/(cid:2)- onlythreebindinastablefashionintheprimarycarbohydrate REMDinappropriatefordeterminingthebindingfreeenergy binding site of YKL-40. The three potential polysaccharide ofthemuchlargerandmoreflexiblecollagen-likemodelpep- physiological ligands at this site include chitohexaose, cello- tides.Thus,umbrellasamplingwasusedtodeterminethework hexaose, and hyaluronan. In the section that follows, we will requiredtodetachthecollagenligandsfromtheshallowclefts describethedynamicsofchitohexaose,cellohexaose,andhya- of YKL-40. Over the entire reaction coordinate, this value luronan binding to YKL-40. The remaining three ligands— equatestobindingaffinity,enablingrelativecomparisonofcol- heparin, heparan sulfate, and chondroitin sulfate—were dis- lagenpeptideaffinity.TheMDumbrellasamplingsimulations lodgedfromthebindingsiteoverthecourseofMDsimulations. usedanativecontacts-basedreactioncoordinateanalogousto The (cid:4)-1,4-glycosidic linkages in heparin and heparan sulfate, that defined by Sheinerman and Brooks (55) and as imple- insteadof(cid:3)-1,4,modifiestherelativeorientationofdisaccha- mented in recent cellulose decrystallization studies (56, 57). ride monomers from that of the chito-oligosaccharide. The Here,anativecontactwasdefinedasaYKL-40proteinresidue NMR solution structure of heparin (PDB code 1HPN) shows within12Åofacollagenpeptideresidue;distancewasdefined thattherelaxedconformationissemi-helical(59),whichcan- by center of geometry of a given residue. The cutoff distance notbefeasiblyaccommodatedintheconserved,narrowcarbo- wasselectedtobelargerthanthenon-bondedcutoffdistance, hydrate binding site of YKL-40. Heparan sulfate suffers from ensuringthatthecollagenligandwasnolongerinteractingwith similarstericconstraintsposedbytherelaxationdrivingforce. YKL-40.Additionally,thewaterboxesofthecollagen-YKL-40 The bulky sulfated side chains of heparin introduce further systemsweremadebiggertoaccommodatetherequiredsepa- steric hindrance and, in the case of heparin and chondroitin rationdistance. sulfate, unfavorably strong electrostatic interactions resulting Thechangeinfreeenergywasdeterminedasafunctionof fromnegativelychargedmoietiesinconvenientlylocatedalong thereactioncoordinate,(cid:5),formulatedastheweightedsumof thecleft(i.e.withoutaco-located,oppositelychargedprotein thestatesofthenativecontacts.Theinitialcoordinatesofthe residue)ejecttheligandsfromthecleft. bound systems were selected from 250-ns equilibrated snap- Inthecasesofheparin,heparansulfate,andchondroitinsul- shots.Theinitialnumberofnativecontactsandtheirweights fate,theligandsquickly“relax”fromtheinitialwideV-shaped werecalculatedfromthesesnapshots.Aninitialreactioncoor- conformationastheyareexpelledfromthecleftbycharge-and dinateof0(normalized)correspondstothisinitialcondition, steric-based effects. Relaxation of the sugar from the initial and a final reaction coordinate of 1 corresponds to all of the bindingposeissufficienttoinitiatelossofcriticalnon-bonded nativecontactsbeingoutsidethe12-Åcutoff(i.e.theligandis interactionsalongwithasubsequentreductioninaffinity(Fig. decoupledandfreelysamplingthebulk).Thereactioncoordi- 4).Within25ns,heparin,heparansulfate,andchondroitinsul- natewasdividedinto20windowsevenlyspacedalongthereac- fatewereexpelledfromthecleftintobulksolution.Eachofthe tioncoordinate,andeachwindowwassampledfor5ns,where threeligandscapableofbindingwiththeprimarybindingcleft thereactioncoordinatewasmaintainedatthespecifiedvalue maintainedthe(cid:3)1boatconformationovertheentiresimula- usingaharmonicbiasingforcewiththeforceconstantof41,840 kJ/mol. The potentials of mean force profiles were calculated tion.Chitohexaoseandcellohexaoseremainedinthebinding usingtheweightedhistogramanalysismethod(WHAMsoft- cleftovertheentire250-nsMDsimulationwhilemaintaining ware),anderroranalysiswasperformedusingbootstrapping. theinitialwideVshape.HyaluronandevelopedasharpVshape Adetailedlistingofallthesimulationsandfreeenergycalcula- within a few nanoseconds and maintained this conformation tions performed as part of the objectives of this study is pro- within the binding cleft for the remainder of the simulation videdinsupplementalTableS1. (supplementalFig.S6);thisisprimarilyduetovariationingly- cosidic linkage, where hyaluronan exhibits a (cid:3)-1,3-linkage ResultsandDiscussion withinthemonomerinsteadofthe(cid:3)-1,4-linkageofcello-and Protein-PolysaccharideBindinginYKL-40—MDsimulation chitohexaose. Also, comparison of the equilibrated chito- suggeststhatofthesixpolysaccharideoligomersinvestigated, hexaose- and hyaluronan-bound structures disabuses one of 2628 JOURNALOFBIOLOGICALCHEMISTRY VOLUME292•NUMBER7•FEBRUARY17,2017 IdentifyingthePhysiologicalLigandofYKL-40 FIGURE5.SnapshotsfromfourindependentMDsimulationsofheparin(whitestick)bindingtoaputativeheparin-bindingsite(bluesurface)ofYKL-40 (graysurface).TheprimaryoligosaccharidebindingsiteofYKL-40ismarkedbyanaromaticresidueshowninsalmonsurfacerepresentation.Transparent spheresillustratetheinitialsimulationpositionsofheparin.Intwocases,aandb,theheparinligandwasinitiallyboundintheprimaryYKL-40bindingsite.In bothcases,theligandwasexpelledfromtheprimarybindingsiteintosolutionandlocatedtheheparin-bindingsitethroughelectrostaticinteractions.Two additionalsimulations,candd,wereinitializedwiththeheparinligandfreeinsolution.Again,theligandsidentifiedtheYKL-40heparin-bindingdomain throughcharge-basedinteractions.Theliganddidnotspecificallybindinaparticularconformation.Rather,theliganddynamicallyinteractedwiththe heparin-bindingdomain. thenotionthatsimilarbindingmechanismsexistatalternate dentMDsimulationsoftheYKL-40/heparinsystem:onewitha binding sites, because only the (cid:3)1 site pyranose appears to newrandomnumberseed,althoughinthesameconfiguration, maintainsimilarsidechainorientation. andtwoadditionalsimulationswiththeligandrandomlyplaced Thenativedistortedconformationischaracteristicofglyco- insolution(supplementalMovieS2).Ineachcase,theheparin sidehydrolasepyranosebindingbehaviorinthe(cid:3)1site(Fig.4) oligomers were capable of finding and binding to a group (60). In solution, polysaccharide pyranose moieties adopt the of charged residues at the surface of YKL-40 (Fig. 5); these energeticallyfavorablechairconformation(61);however,when were the basic residues of a putative heparin-binding site, boundtoanenzyme,theactivesitesofcatalyticallyactivegly- GRRDKQH, at positions 143–149. Interestingly, this domain cosidehydrolasesdistortthepyranoseringinthe(cid:3)1binding followsaconsensusproteinsequence,XBBXBX(whereBisa subsiteintoalessenergeticallyfavorableconformation,suchas basicresidueandXisanynon-basicaminoacid),thatisnoted aboatorskewconformation(62–65),primingthesubstratefor for its ability to recognize polyanions like heparin (67). In all hydrolytic cleavage. Interestingly, the chitohexaose ligand fourcases,heparinrecognizedthebindingsitewithin25nsof bound in the primary binding site of YKL-40 exhibits a boat MDsimulation(Fig.5),occasionallyvisitingothermoderately conformation despite not being catalytically active (10). This basicsurfacelocationsbeforelocalizingaroundtheGRRDKQH suggeststhatthesugardistortioninthe(cid:3)1bindingsitecon- motif. The strong electrostatic interaction arose from the tributestoligandbindingaswellascatalysis,becausethereisno dynamicformationofsaltbridgesbetweeneitherthesulfateor evolutionary requirement to overcome an activation energy thecarboxylgroupsoftheheparinoligosaccharideandtheside barrierincatalyticallyinactivelectins.Arecentstudyofaho- mologous chitinase suggested that (cid:3)1 pyranose relaxation chainsofthebasicaminoacids(supplementalTableS3).Lys155 andLys193alsoexhibitlarge,favorableinteractionswithhepa- reducesbindingaffinityandaffordstheligandmoreflexibility rin, interacting with the opposite end of the polysaccharide andentropicfreedom(66),whichisconsistentwithourfind- ligand as it binds at the surface. Coupled with experimental ingsfromthe250-nsMDhere. PutativeHeparin-bindingSite—Despitethefactthatthehep- observationofheparinaffinity,ourMDsimulationssuggesta arinoligomercouldnotbeaccommodatedbytheYKL-40bind- non-specific, surface-mediated binding interaction between ingcleft,MDsimulationsdosuggestthattheoligomerinteracts YKL-40andtheextensivelysulfatedheparinoligomer(10,11). with the surface of YKL-40 at a putative heparin-binding site Althoughtheunsulfatedvariant,heparansulfate,didnotvisit (Fig. 1). After ejection from the primary binding site, the oli- the heparin-binding site, chondroitin sulfate also attached to gomerspontaneouslybindstotheYKL-40heparin-bindingsite theputativeheparin-bindingsiteinasimilarfashiontoheparin. (supplemental Movie S1). To address the significance of this Giventhechemicalsimilarityoftheseglycosaminoglycans,i.e. unanticipated event, we performed three additional indepen- highly sulfated and negatively charged, we anticipate the FEBRUARY17,2017•VOLUME292•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 2629 IdentifyingthePhysiologicalLigandofYKL-40 TABLE1 EnergeticcomponentsofthefreeenergyofligandbindingtoYKL-40 System (cid:2)G (cid:2)G (cid:2)G (cid:2)G (cid:2)G (cid:2)G repu disp elec rstr Tot b kJmol(cid:3)1 kJmol(cid:3)1 kJmol(cid:3)1 kJmol(cid:3)1 kJmol(cid:3)1 kJmol(cid:3)1 YKL-40(cid:2)Cellohexaose 379.5(cid:5)3.8 (cid:3)382.3(cid:5)2.1 (cid:3)306.6(cid:5)2.2 (cid:3)1.1 (cid:3)310.5(cid:5)3.6 (cid:3)12.6(cid:5)3.7 Cellohexaose 316.2(cid:5)1.8 (cid:3)287.4(cid:5)1.3 (cid:3)326.7(cid:5)1.6 0 (cid:3)297.9(cid:5)2.8 YKL-40(cid:2)Chitohexaose 535.9(cid:5)11.7 (cid:3)538.9(cid:5)4.2 (cid:3)407.7(cid:5)7.5 (cid:3)5.5 (cid:3)416.2(cid:5)11.2 (cid:3)63.3(cid:5)12.6 Chitohexaosea 329.6(cid:5)4.5 (cid:3)306.2(cid:5)3.0 (cid:3)376.3(cid:5)3.4 0 (cid:3)352.9(cid:5)5.9 YKL-40(cid:2)Hyaluronan 438.1(cid:5)2.8 (cid:3)439.5(cid:5)1.5 (cid:3)1395.9(cid:5)4.2 (cid:3)1.3 (cid:3)1398.6(cid:5)4.3 (cid:3)106.8(cid:5)4.6 Hyaluronan 333.1(cid:5)1.4 (cid:3)306.0(cid:5)1.3 (cid:3)1318.9(cid:5)1.5 0 (cid:3)1291.8(cid:5)2.5 aHamreetal.(68). XBBXBXmotifmayalsoroutinelyappearinchondroitin-bind- charideligandcapableofbindingintheYKL-40bindingcleft ingproteins. willlikelyexhibitasimilarlyfavorableWCAbindingfreeenergy Polysaccharide Ligand Binding Affinity—Each of the three component. In the following section, we expand upon the polysaccharidesmaintainingcontactwiththeprimarybinding molecularlevelinteractionsthatcontributetopolysaccharide siteofYKL-40,cellohexaose(orlikelyanyglucosederivative), bindingaffinityinYKL-40. chitohexaose, and hyaluronan, are feasible ligands. However, Based on these results, it is unlikely that a cello-oligomer freeenergycalculationssuggestthathyaluronanmaypreferen- wouldbindinthecleftofYKL-40overachito-oligomer,and tially bind with YKL-40 if chitin is not present in the human thus, although there is potential for YKL-40 to bind a cello- bodyasaresultoffungalinfection.Theabsolutefreeenergiesof oligomerorglucose,itwouldnotbeinhibitory.Hyaluronan,on bindingcellohexaose,chitohexaose,andhyaluronantoYKL-40 theotherhand,likelycompeteswithchito-oligomersinbind- were (cid:3)12.6 (cid:5) 3.7, (cid:3)63.3 (cid:5) 12.6, and (cid:3)106.8 (cid:5) 4.6 kJ/mol, ing,whichisdueinlargeparttotheelectrostaticfavorabilityof respectively. Repulsive, dispersive, and electrostatic compo- thechargedsidechainsofhyaluronanintheYKL-40binding nentsofthefreeenergychangesaretabulatedinTable1.Con- cleft.Clinicaldatasupporthyaluronanasabiomarkerforcan- vergence assessment of the free energy calculations has been cer prognosis and inflammation (32, 70), the same events in provided in supplemental Fig S3. We recently calculated the which YKL-40 appears at elevated serum levels (5). To our freeenergyofsolvationforchitohexaoseaspartofastudyon knowledge,therearenostudiesevaluatingtheco-existenceof family18chitinases(68);thisvaluehasbeenusedinourcalcu- YKL-40 and hyaluronan. The cell receptor protein CD44 has lationofchitohexaosebindingaffinitytoYKL-40forcomputa- been implicated in hyaluronan binding interactions and is tionalefficiency.Themethodsusedtocalculatesolvationfree also involved in confounding scenarios, both aggravating and energyofchitohexaosewereidenticaltothosedescribedhere. improvinginflammation(71).SequencealignmentofYKL-40 Furthermore, the binding free energy of chitohexaose to with the hyaluronan-binding domain of human CD44 (72), YKL-40isingoodagreementwiththatofhomologousfamily18 usingBLASTP2.3.0(73),showsnohomology,furthersuggest- chitinases,despitemutationofthecatalyticmotifinthelectin. ingthatthisYKL-40-hyaluronanbindingisdifferentfrompre- Chitohexaoseandcellohexaosearebothneutralligandsbut viouslyknownhyaluronan-bindingproteins(74). display a significant difference in binding affinity to YKL-40. PolysaccharideBindingDynamics—YKL-40ishighlyhomo- Electrostaticinteractionsappeartobeoneofthemoresignifi- logous with carbohydrate-active enzymes found in glycoside cantcontributorstotheenhancedaffinityofchitohexaoseover hydrolasefamily18(12,75).Despitelackingcatalyticability,the cellohexaose(Table1).Forcellohexaose,thechangeintheelec- primary polysaccharide binding site of YKL-40 exhibits trostatic component of binding free energy was unfavorable remarkablesimilaritytothesefamily18chitinases.Assuch,one (20.1 (cid:5) 2.7 kJ/mol), whereas the same component for chito- may reasonably expect that ligand binding within this family hexaose was energetically favorable ((cid:3)31.4 (cid:5) 8.2 kJ/mol). In willdemonstratesimilartrends,regardlessofevolutionaryori- thecaseofhyaluronan,electrostaticinteractionsplayaneven gin. Indeed, we observe that chitohexaose, cellohexaose, and greater role in enhancing affinity of the ligand for YKL-40 hyaluronan binding in the primary binding site of YKL-40 ((cid:3)77.0 (cid:5) 4.5 kJ/mol). This increasing electrostatic contribu- follow a general pattern common to carbohydrate-active tionisreflectiveofincreasingnumberofelectronegativeatoms enzymes. Namely, that ligand binding interactions are medi- inthesidechainsofcarbohydratesaswegofromcellopentaose ated by carbohydrate-(cid:6)stacking interactions with aromatic tochitohexaosetohyaluronan.Weobservenosignificantdif- residues, and hydrogen bonding interactions are critical to ferencesincellohexaose,chitohexaose,orhyaluronanbinding overallligandaffinityandstability.Weinvestigatethesetrends to YKL-40 arising from Weeks-Chandler-Anderson (WCA) quantitativelythroughanalysisoftheMDsimulationtrajecto- dispersionandrepulsion(Table1).Thisislargelyafunctionof ries,includingrootmeansquaredeviation(RMSD)ofthepro- themolecularsimilarityofthepyranoseringscomprisingthe tein,rootmeansquarefluctuation(RMSF)ofboththeprotein monomericunitsofthreeoligosaccharides(Fig.2).Thepyra- and the ligands over the course of the simulation, hydrogen noseringsofcarbohydratesboundintheactivesitesofglyco- bondinganalysis,degreeofsolvationoftheligand,andinterac- sidehydrolases,andbyextensionthebindingcleftsoflectins, tionenergyoftheligandwiththeprotein. form carbohydrate-(cid:6)stacking interactions with surrounding Cellohexaose,chitohexaose,andhyaluronanbindinginthe aromaticresiduesalongtheclefts(69).InYKL-40,thesestack- primary YKL-40 binding site did not adversely affect protein inginteractionsareformedinthe(cid:3)3and(cid:3)1bindingsiteswith dynamics.Ineachcase,bindingthepolysaccharideliganddid residuesTrp31andTrp352,respectively.Naturally,anypolysac- notsignificantlydisturbtheproteinbackbone(i.e.proteinfold), 2630 JOURNALOFBIOLOGICALCHEMISTRY VOLUME292•NUMBER7•FEBRUARY17,2017 IdentifyingthePhysiologicalLigandofYKL-40 luronanisasstable,ifnotmoreso,aschitohexaoseinthepri- marybindingsite(Fig.6a);however,cellohexaoseappearstobe morestablerelativetothetwootherligandsattheendsofthe bindingcleft.Thislatterfindingisafunctionofthelengthofthe sidechainsattachedtothepyranoseringsofeachoftheligands. Ofthethreecarbohydrates,thecello-oligomerhastheshortest sidechains,andthus,theligandfluctuateslessbecauseitdoes not need to rearrange as significantly to induce binding. As shownabove,thisdoesnotnecessarilycorrespondtothemost thermodynamicallypreferentialligand,andlowerRMSFcould also be interpreted hypothetically as loss of translational and conformational freedom, resulting in unfavorable entropic contribution. The hydrogen-bonding partners of chitohexaose, cello- hexaose,andhyaluronanarequitedifferent,largelyasaresult of the conformational change of hyaluronan (supplemental TableS4).Definingahydrogenbondasapolaratomwithin3.4 Å and 60° of a donor, we identified the formation of donor- acceptorpairsandpercentoccupancyofthesehydrogenbonds between the protein and each carbohydrate moiety over the courseofthe250-nsMDsimulations(supplementalTableS4). Asdescribedabove,hyaluronanformedasharpVshapeinthe polysaccharidebindingcleft,whichminimizedsterichindrance and, in turn, modified accessible hydrogen bonding partners relativetochito-andcellohexaose.Hydrogenbondsatthe(cid:2)1 site, between glucuronic acid and Asp207, Arg263, and Tyr141, stabilized the hyaluronan conformation (supplemental Table S4).Inthe(cid:3)1subsite,chitohexaoseprimarilyhydrogenbonds withthesidechainofTyr206andthemainchainofTrp99.Inthe casesofbothcellohexaoseandhyaluronan,theinteractionwith Tyr206wasabolishedandinsteadsupplementedbyTrp99alone. Inthe(cid:3)2subsite,theoxygenofthechitohexaoseacetylformsa long-livedhydrogenbondwiththeindolenitrogenofthebur- iedTrp352;neitherhyaluronannorcellohexaoseinteractwith the (cid:3)2 site through this tryptophan. Rather, Trp31, which stackswiththepyranoseinthe(cid:3)3subsite,actsasahydrogen donortothe(cid:3)2subsiteglucuronicacidsidechainofhyaluro- nan.Inthecaseofcellohexaose,themainchainofasolvent- FIGURE6.a,RMSFofthepolysaccharideligandsonaper-binding-subsite exposed asparagine, Asn100, almost exclusively mediates basis.Theerrorbarswerecalculatedusingblockaveragingover2.5ns.b, hydrogenbondinginthe(cid:3)2site.The(cid:2)2,(cid:3)3,and(cid:3)4binding averagenumberofwatermoleculeswithin3.5Åofeachligandmonomer. subsites exhibit less frequent hydrogen bonding between the Theerrorbarsrepresentonestandarddeviation. ligandandtheprotein,andthereislittleconsistencyinbonding andtheligandremainedrelativelyunperturbedoverthecourse partnersacrossligands.Certainly,thesevariationswillmanifest ofthesimulation.TherelativelyconsistentRMSDofthepro- in enthalpic contributions to ligand binding, because even a tein backbones suggests that the simulations reached a local singlehydrogenbondmayaccountfor4–29kJ/molofbinding equilibrium(supplementalFig.S4a).AswiththeRMSDcalcu- freeenergyinbiologicalsystems(76,77);suchislikelythecase lation, the RMSF of the protein backbone suggests that the for cellohexaose and chitohexaose binding to YKL-40, where bindingofpolysaccharidesdoeslittletodisturbtheoverallpro- the latter exhibits both greater hydrogen bonding capability tein conformation (supplemental Fig. S4b). Additionally, we andamorefavorablebindingfreeenergy. didnotobservesignificantconformationalchangesinthecar- Keyaromaticresidues,Trp31,Trp99,andTrp352,playasig- bohydrate-bindingsiteofYKL-40beforeorafterligandbinding nificant role in binding all three oligosaccharides. Notably, (supplementalFig.S5).Moredetailsofproteindynamicsand these tryptophans are conserved in other lectins, including conformationalchangeshavebeenprovidedinthesupplemen- mammaryglandprotein(MGP-40)andmammalianlectinYm1 taltext. (20, 78). According to previous structural studies, these aro- TheRMSFoftheligand,averagedover250nsasafunctionof matic residues form hydrophobic stacking interactions with binding site, provides a measure of relative ligand stability. pyranose moieties at the (cid:3)3, (cid:2)1, and (cid:3)1 binding subsites, Error was estimated by block averaging over 2.5-ns blocks. respectively (11). As mentioned above, this carbohydrate-(cid:6) Ligandstabilityoverthecourseofthesimulationsuggestshya- stackingwasobservedacrossthethreepolysaccharideligands FEBRUARY17,2017•VOLUME292•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 2631 IdentifyingthePhysiologicalLigandofYKL-40 FIGURE7.Nativecontactanalysisofeachcollagen-likepeptidemodelbindingtoYKL-40atsiteA.Thecolorscalerepresentsthenormalizedfrequency (i.e.fractionalpercentageofframesinwhichthecontactwasformed)oftherespectiveYKL-40residueasanativecontact.Anativecontactwasdefinedasany timeacollagenresiduewaswithin12ÅofaYKL-40residue,wheredistancewasdefinedbycenterofgeometryofagivenresidue.Onlyframesfromthelast100 nsofsimulation,followingaperiodofequilibration,wereconsideredinthisanalysis. asaresultofthechemicallysimilarcarbohydrate“backbone”of passesasmanypotentialbindingmodesasfeasibletodescribe pyranose rings. However, at the (cid:2)1 site of hyaluronan, the protein-protein binding dynamics and relative affinity of stacking interaction with Trp99 was not maintained. Instead, YKL-40forcollagen. prominenthydrogenbondingforcesthe(cid:2)1pyranoseringinan LigandBindingDynamicsandComparisonofModelCol- orientation that is perpendicular to aromatic Trp99 (supple- lagen-like Peptides—Dynamics of the collagen-like peptide mentalFig.S6).Nevertheless,thesimilarityinWCAcontribu- ligandsvarieswithbothbindingsiteandthepitchofthetriple tionstobindingfreeenergyforallthreepolysaccharidessug- helix.Rootmeansquaredeviationillustratestherelativestabil- geststhatthis(cid:2)1sitestackinginteractionweaklycontributes ityofeachcollagenpeptideineachofthetwobindingsites,A totheoverallbindingfreeenergy. andB(supplementalFig.S7).Althoughthemoleculardocking ThedegreetowhichthebindingcleftofYKL-40wasacces- resultsinveryclosecontactbetweencollagenandYKL-40(Fig. sibletowatermoleculesdidnotchangesignificantlywiththe 4), such that collagen appears to be almost buried in the pri- bound polysaccharide. The degree of ligand solvation was marycarbohydrate-bindingsiteofYKL-40,minimizationand determinedbycalculatingtheaveragenumberofwatermole- MDsimulationresultsintheslightriseandshiftintheposition culeswithin3.5Åofagivenpyranoseringoverthecourseofthe ofcollagenforeverymodelatbindingsiteA.Eachofthefour simulations(Fig.6b);errorisgivenasonestandarddeviation. ligandsmaintainsassociationwiththebindingsiteAoverthe Chitohexaoseandcellohexaosedisplaysimilardegreesofsol- courseof250ns,althoughwithslightlydifferentprotein-pro- vationacrossthelengthofthecleft.Hyaluronanallowsamod- tein contacts with YKL-40 (Fig. 7). Native 1CAG, 1BKV, and erateincreaseindegreeofsolvationofthecleftbycomparison 1Q7Dattainedrelativestabilityinapositionnotsignificantly tochitohexaose,acrossthe(cid:3)3and(cid:2)1subsites,whereitssharp differentfromtheinitialdockedposition,butthe1CAGpep- Vshapeagaincontributestovariationinbehavior.Giventhe tide (supplemental Movie S3), with disrupted helical content similarity in solvent accessibility within the binding cleft resultingfromtheglycinetoalaninemutation,requiredanadjust- regardless of ligand, it is unlikely that entropic contributions mentinpitchbeforeassociatingwithYKL-40.Thisrelativechange fromsolvationplayaroleintheobserveddifferencesinligand in position is shown in the RMSD of the peptides during first bindingfreeenergy. 50–100nsbeforestabilization(supplementalFig.S7a).Binding Protein-Protein Binding in YKL-40—Based on biochemical site B accommodates helical pitches of 7/2 collagen peptides, characterization,itisclearthatYKL-40functionallyinteracts becausenative1CAGand1Q7DassociatedwithYKL-40with withcollagen.Forexample,Biggetal.(9)uncoveredtheability very little change in orientation relative to the initial docked ofYKL-40tospecificallybindtypesI,II,andIIIcollagenfibers, positions.The1CAGligandwasexpelledfrombindingsiteB,as andIwataetal.(79)recentlydiscoveredthatYKL-40secreted wasthesomewhatimperfect10/3-pitched1BKVpeptide.This by adipose tissue inhibits degradation of type I collagen by suggeststhatYKL-40mayavoidphysiologicalinteractionswith matrix metalloproteinase-1 and further stimulates the rate of certaincollagenfibrildomains,especiallythosehavingimper- type I collagen formation. However, a lack of structural evi- fecthelicalpitches.Theintegrin-bindingcollagen-likepeptide dencehasprecludeddevelopmentofanunderstandingofthe 1Q7Ddemonstratedthegreateststabilityamongcollagenpep- molecularnatureoftheseinteractions.Usingmoleculardock- tidesinbothbindingsites(supplementalFig.S7)andformed ing,MDsimulation,andfreeenergycalculations,wedescribe morenativecontactswithYKL-40thantheotherthreecollagen interactions of four collagen-like peptides with two putative peptides at binding site A (Fig. 7). We anticipate that the protein-binding sites along the surface of YKL-40. The selec- GFOGERmotifplayssubstantialroleinmediatingtheinterac- tionofmodelpeptides,aswellasmultiplebindingsites,encom- tionofthiscollagenpeptidewithYKL-40. 2632 JOURNALOFBIOLOGICALCHEMISTRY VOLUME292•NUMBER7•FEBRUARY17,2017 IdentifyingthePhysiologicalLigandofYKL-40 Examiningthenumberofnativecontactsbetweeneachcol- lagenpeptideandbindingsiteAofYKL-40revealsseveralcom- moninteractionsitesmediatecollagenbindingandhelpsnar- row down key regions of interest (Fig. 7). YKL-40 residues 69–71, 98–108, 205–215, and 230–235 interact with all four collagenpeptidesandlikelycontributetobindingaffinity,aswe willdiscussbelow.TheregionofYKL-40betweenresidues179 and189associateswithnative1CAG,1BKV,and1Q7D,butnot withtheoriginal1CAG,asthispeptidewithrelaxedsymmetry neededtoadjustitspositionfromdockedconformationtosta- bilize the interactions. The 1Q7D model formed the greatest number of interactions with YKL-40 residues relative to the otherthreemodels.Similarnativecontactanalysisforbinding siteBshowsthatevenN-terminalandC-terminalresiduesof YKL-40areinvolvedincollagenbindingatbindingsiteB(sup- plementalFig.S8).Itshowsthat,unlikebindingsiteA,thereis littledifferenceinthenumberofinteractionsofmodel1Q7D and native 1CAG collagen peptide with the binding site B of YKL-40. To better understand the interactions collagen makes with YKL-40, identified through the native contact analysis, we calculatedelectrostaticandvanderWaalsinteractionener- giesofeachYKL-40residuewitheachcollagenpeptideover the250-nsMDsimulations(supplementalTableS5).Visual inspectionofthesimulationsrevealsaromaticresiduesinthe binding sites, such as Trp212 and Trp99 in binding site A and Phe49 in binding site B, were involved in aromatic-proline stacking interactions with the collagen triple helices. Such interactions are favorable, occurring because of both hydro- phobiceffectsandinteractionbetweenthe(cid:6)aromaticfaceand thepolarizedC-Hbonds(80).Thisisillustratedinthevander Waalscomponentoftheinteractionenergy,whereatbinding siteA,Trp69,Trp71,Trp99,Trp212,andPhe234showsubstantial favorableinteractionwithcollagenpeptides,althoughthecon- tribution varies with each collagen peptide (supplemental TableS5).Additionally,acidicandbasicresiduesoftheinteg- rin-bindingGFOGERmotiffromcollagen-likepeptide1Q7D FIGURE8.CollagenbindingwithYKL-40.a,saltbridgesformedbetween formionicinteractionswiththecounter-ionicaminoacidsof the1Q7Dcollagenpeptide(greencartoon)andbindingsiteA(graysurface).b, saltbridgeinteractionsofthe1Q7Dcollagenpeptide(cyancartoon)with YKL-40, also known as salt bridges. Specifically, 1Q7D forms bindingsiteB(graysurface).c,bindingfreeenergyobtainedfromumbrella threesaltbridgesatbindingsiteAandonesaltbridgeatbinding sampling MD simulations of the YKL-40-collagen peptide systems, inter- siteB(Fig.8).AtsiteA,Arg105,Asp207,andArg263ofYKL-40 pretedasnegativeofPMFtodecouplethepartners.Thecollagenpeptidesin questionare1Q7D(atbothsites)and1CAG(atsiteAonly).Thefreeenergyis interact with Glu(a11), Arg(c12), and Glu(c11) of 1Q7D, shownasafunctionofnormalizedreactioncoordinate,wherethereaction respectively,wherethea,b,orcintheparenthesescorresponds coordinateisfractionofnativecontacts. to one of the three strands of the collagen model. Notably, Glu(a11),Arg(c12),andGlu(c11)belongtotheGFOGERinteg- staticinteractionenergies;supplementalTableS5),althoughas rin-bindingmotif.AtsiteB,Lys23ofYKL-40formsasaltbridge aresultofhydrogenbondingratherthansaltbridgeformation. with Glu(a11) of 1Q7D. As anticipated, the GFOGER motif WenotethattheinteractionenergiesofYKL-40residueswith playedasubstantialroleintheinteractionofthiscollagenpep- residuesofeachcollagenmodelpeptidearenotconservedasa tide with YKL-40, but its role was different from that of the resultofdifferencesinthecollagensequences,particularlyin integrinbindingmechanism,whichfurtherinvolvescoordina- themiddleregionsconsistingofdifferentimino-triplets. tionofametalion(42).Nevertheless,saltbridgesandhydro- From MD simulation, we observe substantial hydrogen phobiccontactsareveryimportantinbothcases,significantly bondingbetweenthecollagenpeptidesandYKL-40acrossthe contributing to the electrostatic component of the binding lengthofeachbindingsite,whichcontributestooverallstabil- affinity of this collagen peptide relative to collagen peptides ityandbindingaffinity.Thehydrogenbondinganalysisforthe lackingacidicorbasicaminoacids(e.g.native1CAG)(supple- collagen-YKL-40systemswasperformedasdescribedabovefor mental Table S5). The hydroxyl oxygens of hydroxyprolines the polysaccharide ligands; pairs exhibiting greater than 10% from 1CAG and native 1CAG appear to be involved in ionic occupancy over the simulation are reported individually in interactions with acidic YKL-40 residues (favorable electro- supplemental Table S6. The YKL-40 residues responsible for FEBRUARY17,2017•VOLUME292•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 2633

Description:
From the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506. Edited by Gerald .. alchemical pathway. affinity of this collagen peptide relative to collagen peptides lacking acidic or basic amino acids (e.g. native 1CAG) (supple- mental Table S5).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.