ebook img

Extension of the Thomas-Fermi approximation for trapped Bose-Einstein condensates with an arbitrary number of atoms PDF

0.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Extension of the Thomas-Fermi approximation for trapped Bose-Einstein condensates with an arbitrary number of atoms

Phys.Rev. A74,065602(2006) Extension of theThomas-Fermi approximation for trappedBose-Einstein condensateswith an arbitrary number of atoms A. Mun˜oz Mateo∗ and V. Delgado† DepartamentodeF´ısicaFundamental II,UniversidaddeLaLaguna, LaLaguna, Tenerife,CanaryIslands,Spain By incorporating the zero-point energy contribution we derive simple and accurate extensions of the 7 usual Thomas-Fermi (TF) expressions for the ground-state properties of trapped Bose-Einsteinconden- 0 satesthatremainvalidforanarbitrarynumberofatomsinthemean-fieldregime.Specifically,weobtain 0 approximate analytical expressions for the ground-state properties of spherical, cigar-shaped, and disk- 2 shaped condensates that reduce to the correct analytical formulas in both the TF and the perturbative n regimes,andremainvalidandaccurateinbetweenthesetwolimitingcases.Mean-fieldquasi-1Dand-2D a condensatesappearassimpleparticularcasesofourformulation. Thevalidityofourresultsiscorrobo- J ratedbyanindependentnumericalcomputationbasedonthe3DGross-Pitaevskiiequation. 9 2 PACSnumbers:03.75.Hh,05.30.Jp,32.80.Pj ] r e The experimental realization of Bose-Einstein conden- ground state, ψ(r) = (πa2)−3/4exp( r2/2a2), and the r − r h sates(BECs)ofdiluteatomicgasesconfinedinopticaland chemicalpotentialsatisfies ot magnetictraps[1,2,3]hasstimulatedgreatactivityinthe . characterization of these quantum systems. Of particular (3/2)~ω +gn¯ = µ (3) t a interest are the ground-state properties of trapped BECs m wheren¯ = N/(√2πa )3 isthemeanatomdensity. Away with repulsive interatomic interactions [4]. These proper- r - tiesderivefromthecondensatewavefunctionψ(r)which, fromthesetwolimitingcases,inprinciple,onehastosolve d theGPEnumerically. Veryfewtheoreticalworkshavead- inthezero-temperaturelimit,satisfiesthestationaryGross- n dressed the question of looking for approximate analyti- o Pitaevskiiequation(GPE)[5] calsolutionsvalidinbetweenthetwoanalyticallysolvable c [ regimes. Themostrelevantproposalsarebasedonavaria- ~2 1 2+V(r)+gN ψ 2 ψ = µψ, (1) tionaltrialwavefunction[6],oronthesemiclassicallimit −2m∇ | | oftheWignerphase-spacedistributionfunctionofthecon- v (cid:18) (cid:19) 5 where N is the number of atoms, g = 4π~2a/m is densate[7]. However,thepracticalusefulnessoftheseap- 9 proaches turns out to be somewhat limited in comparison the interaction strength, a is the s-wave scattering length, 6 withthesimpleTFapproximation. 1 V(r) = 1m(ω2r2 +ω2z2) is the harmonic potential of 2 ⊥ ⊥ z In this work we address the above question from a dif- 0 theconfiningtrap,andµisthechemicalpotential. ferent point of view. We start from the usual TF approxi- 7 OnlyintwolimitingcasescanEq. (1)besolvedanalyti- 0 mationandmodify itconvenientlyto account,in a simple cally: intheThomas-Fermi(TF)andperturbativeregimes. / manner, for the zero-point energy contribution. This en- t When N is sufficiently large that µ ~ω , ~ω , one a ≫ ⊥ z ables us to derive simple and accurate extensions of the m enters the TF regime. In this case the kinetic energy can TF expressions that remain valid for an arbitrary number beneglectedincomparisonwiththeinteractionenergyand - ofatomsinthemean-fieldregime. Specifically,weobtain d the GPE reduces to a simple algebraic equation. Useful general analytical expressions for the ground-state prop- n analytical expressions can then be obtained for the con- o erties of spherical, cigar-shaped,anddisk-shapedconden- densate ground-state properties [4]. In the simple case c satesthatreduceto thecorrectanalyticalformulasinboth of a spherical trap characterized by an oscillator length : theTFandthe perturbativeregimes,andremainvalidand v a = ~/mω,Eq. (1)leadsintheTFlimitto i r accurateinbetweenthesetwolimitingcases. X We begin by considering a BEC in a spherical trap. In p ar 1mω2r2+gN ψ(r) 2 = µ, 0 r R (2) principle, we start from the TF relation of Eq. (2). How- 2 | | ≤ ≤ ever, since we intend to apply this equation to arbitrarily small condensates, we introduce a lower cutoff radius r , where the condensate radius R = 2µ/~ωar is deter- defined through 1mω2r2 = 3~ω, in order to be consis0- mined from the condition |ψ(r)|2 ≥p0, and the chemical tent with the fact2that th0e cont2ribution from the harmonic potential µ = 1 (15Na/a )2/5~ω follows from the nor- oscillatorenergycannotbesmallerthanthezero-pointen- 2 r malizationofψ(r). ergy. As for the small volume V a3 correspondingto 0 ∼ r In the opposite limit, when N is small enough that the r r ,wedonotaspiretogetapreciseknowledgeofthe 0 ≤ interaction energy can be treated as a weak perturbation, wavefunction therein. Instead, we contentourselveswith oneentersthe(idealgas)perturbativeregime. Inthiscase, an effective condensate density n¯ in that region. As we 0 tothelowestorder,ψ(r)isgivenbytheharmonicoscillator shall see, this is all that is needed to obtain very accurate 2 approximateformulas for mostof the condensateground- 5 20 (a) (b) stateproperties. Thuswestartfromtheansatz R 4 µ 15 1 2 mω2r2+gN ψ(r) 2 = µ, r0 < r R (4a) 3 µ 2 | | ≤ µ 1,5 3 3 TF 0 1 10 R 2~ω+g 6/πn¯0 = µ, 0 ≤ r ≤ r0 (4b) 2 εpot ε 2 RTF with ψ(r) = 0 fopr r > R. A renormalization constant int 5 1 1 κ−1 6/π hasbeenintroducedin Eq. (4b)to guaran- ε 0 tee th≡e cporrect perturbative limit. In this limit µ → 32~ω 00 5 10 1k5in 20 00 0 55 10 5 and R r0 = √3ar. Under these circumstances, only χ 1xχ10 2x10 Eq. (4b→) contributes significantly to the chemical poten- 0 0 tial, and in this case n¯ = N/V . This corresponds to a 0 0 FIG.1:(Coloronline)Theoreticalpredictionfortheground-state uniformsphericalcondensate,definedinthefinite volume propertiesofsphericalcondensates(solidlines).Theopencircles V . In order for this uniform density to producethe same 0 aretheexactnumericalresults.Forcomparisonpurposeswehave chemicalpotentialasthegroundstateoftheharmonicos- alsoincludedtheTFprediction(dashedlines). cillatoroverthevolumeoftheentirespaceitisonlyneces- sary to renormalizethe correspondinginteractionstrength bymultiplyingby 6/π. Equations(4)alsoyieldthecor- satisfiesEq. (5)witharesidualerror[8]smallerthan0.7% rectresultintheTFregime. Thisismainlyaconsequence p foranyχ [0, ). Figures 1(a) and1(b)show, respec- ofthedirectrelationexistingbetweenthenumberofparti- 0 ∈ ∞ clesandthesizeofatrappedBEC.Forlargecondensates, tively,thepredictedchemicalpotential,µ = 1R2,andcon- such that µ ~ω, one has R r and, as a result, the densate radius, obtained from Eq. (6) (solid2lines), along 0 ≫ ≫ relativecontributionfromEq. (4b)tothenormalizationin- with the exact results obtained from the numerical solu- tegralthatdeterminesµbecomesnegligible.Sincewehave tion of the 3D GPE (opencircles). For the numericalcal- renouncedanexplicitexpressionforψ(r)inV ,inthisre- culation we have defined the radius through the condition 0 spect,ourapproachcannotprovidemoreinformationthan ψ(R) 2 = 0.05 ψ(0) 2. With this definition, Eq. (6)re- theTFapproach. OnlywhenR r0 canwehaveasuffi- |produc|esthenum|erical|Rwitharelativeerrorsmallerthan ≫ cientlypreciseknowledgeofthewavefunctionand,inthis 3% for any χ . Most of the error, however, comes from 0 case,itcoincideswiththeTFwavefunction. theregionwhereχ 1(TFlimit)becauseinthatregion 0 The chemical potential follows from the normalization ≫ 2 R R andit rathersatisfies ψ(R) = 0. Theaccu- TF ofψ(r). Afterastraightforwardcalculationoneobtains → | | racywithrespecttothenumericalµisbetterthan0.5%. Astraightforwardcalculationyieldsthemean-fieldinter- 1 5 √3 2 3√3 3 a actionenergyperparticle,ǫint ǫint/~ω Eint/N~ω, R + (κ 1)R κ = N , (5) ≡ ≡ 15 2 − − 2 − 5 a where R R/a , and µ = 1R2(cid:18)is the c(cid:19)hemical proten- ǫint = 8χ1 1085R7+√3(κ−1)R4 tial in uni≡ts of ~ωr. As Eq. (25) shows, the ground-state 0 (cid:20) properties depend on the sole parameter χ Na/a . 6√3 κ 3 R2+9√3 κ 3 . (7) 0 ≡ r − − 5 − 7 When χ 1 (TF limit) the above equation leads to (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) 0 ≫ µ = 1(15χ )2/5, as expected. The χ 1 limit cor- For χ 1, one recovers the TF result, ǫ = (2/7)µ. 2 0 0 ≪ 0 ≫ int responds to the perturbative regime and, in this case, one 2 In the χ 1 limit, using that R = 3+2 2/πχ 0 0 obtainsµ = 3/2+ 2/πχ ,whichisnothingbuttheper- ≪ − 0 (1/π)(1/9+ 2/3π)χ2+O(χ3)isaperturbativesolution turbative result (3). For arbitrary χ , in principle one has 0 0 p p 0 ofEq. (5),oneobtainsǫ = χ ~ω/√2π =gn¯/2,which tosolvenumericallytheabovequinticpolynomialequation p int 0 againisthecorrectresult. Finally,thekineticandpotential (which has only one physically meaningfulreal solution). energies can be readily obtained in terms of the previous This is a simple task thatcan becarried outwith standard resultsbyusingtheexactrelations[5] mathematicalsoftwarepackages.Wehavefound,however, aratheraccurateapproximatesolution.Itcanbeshownthat ǫ E /N = µ/2 (7/4)E /N, (8a) kin kin int theexpression ≡ − ǫ E /N = µ/2 (1/4)E /N. (8b) pot pot int −1 ≡ − 2 1 1 π/2 R = 3+ (15χ0)25 + 25 + 72χ101/15+10 + p2χ0 ! aInndFiǫgp.o1t,(ao)bwtaeinsheodwfrtohmethEeqosr.et(i6ca)–l(p8r)ed(iscotliiodnlfionreǫs)in,ta,lǫokning, (6) withtheexactnumericalresults(opencircles). 3 NextweconsideraBECconfinedinacigar-shapedmag- 5 2 netic trap with oscillator lengths a⊥ = ~/mω⊥ and χ1 = 1.0 az = ~/mωz and an aspect ratio λ p= ωz/ω⊥ ≪ 4 µ 2 1 2. We shall restrict ourselves to the mean-field regime, which rpequires Nλa2/a2 1 [9, 10, 11]. As be- 3 µ µ fore, we startfrom the⊥usual≫TF expression,whichwe as- TF 10 1 0√ λ sume to be valid up to a minimum radial distance r0 = 2 ε z ⊥ pot ε √2a⊥, determined from the condition that the contri- int -1 1 bution from the radial harmonic oscillator energy should ε not be smaller than ~ω . This defines an outer region kin ⊥ V (r ,z): r2/R2+z2/Z2 1 r > r0 , 0 -2 w+hich≡isn{oth⊥ingbutt⊥heusualTFellTipFso≤idal∧dens⊥ityclo⊥u}d, 0 5 1χ0 15 20 0 0a,3 n 0,6 1 1 truncated at r = r0. Note that unlike what happens ⊥ ⊥ with the condensate radius R = 2µ/~ω a , which FIG.2:(Coloronline)Theoreticalpredictionfortheground-state ⊥ ⊥ remains the same, now the axial condensate half-length properties of arbitrary cigar-shaped condensates with λ ≪ 2 Z = 2(µ/~ω 1)a /√λ cpoincides with the TF (solid lines). The open circles are exact numerical results ob- value Z only in⊥ −the limzit µ/~ω 1. For large tainedwithλ=0.2. ThedashedlineistheTFprediction. TF ⊥ condenspates, when µ ~ω (TF re≫gime), this is the ⊥ ≫ only region that contributes significantly. On the con- trary, in the perturbative regime, as µ ~ω most of µ = 1+1(3χ )2/3andZ = λ−1/2(3χ )1/3,inagreement → ⊥ 2 1 1 the contribution comes from the inner cylinder V withpreviousresults[10,11]. Ingeneral,forarbitraryχ , − 1 (r ,z): r r0 z Z . In this case, if a ≡ anapproximatesolutionsatisfyingEq. (10)witharesidual { ⊥ ⊥ ≤ ⊥ ∧ | | ≤ } ≪ a , the transverse dynamics becomes frozen in the radial errorlessthan0.75%foranyχ [0, )isgiven by ⊥ 1 ∈ ∞ groundstateoftheharmonictrapandthecondensatewave functioncanbefactorizedasψ(r ,z) = ϕ(r )φ(z),with −1 ⊥ ⊥ 1 1 1 4 tϕo(ar⊥m)ea=n-fi(πelad2⊥q)u−a1s/i2-1eDxpc(o−ndr⊥e2n/s2aate2⊥.)S.uTbshtiistuctoinrgretshpeonndins √λZ = (15χ1)54 + 13 + 57χ1+345 + (3χ1)43! Eq. (1)andintegratingouttheradialdynamics,onefinds (11) Themean-fieldinteractionenergyǫ ǫ /~ω is 1 int int ⊥ ~ω + mω2z2+g N φ(z)2 = µ, (9) ≡ ⊥ 2 z 1D | | 1 1 where g = g/2πa2 [12], and we have used that µ ǫint = (√λZ)5+ (√λZ)7 . (12) ~ω 1D1~ω to neg⊥lect the axial kinetic energy. No∼te 15χ1 (cid:18) 7 (cid:19) ⊥ ≫ 2 z Forχ 1,Eq. (12)reducestoǫ = (2/7)µ, whilefor that g can be conveniently rewritten as gn¯ with n¯ = 1 int 1/π(r10D)2,indicatingthatonecanaccountfor2thecontr2ibu- χ1 1≫, itleadstoǫint = (2/5)(µ ~ω⊥), whichagain ⊥ are≪thecorrectanalyticallimits. Asfo−rthecondensateden- tionfromtheradialgroundstatebyusingauniformmean 2 densityperunitareanormalizedtounityinV−. Guidedby sity per unit length, n1(z) ≡ N 2πr⊥dr⊥|ψ(r⊥,z)| , thesesimpleideas,wethenproposethefollowingansatz: afterastraightforwardcalculationonefinds R (√λZ)2 z2 (√λZ)4 z2 2 n (z) = 1 + 1 12mω⊥2r⊥2 + 12mωz2z2+gN |ψ(r⊥,z)|2 =µ, r∈ V+ 1 4a (cid:18) − Z2(cid:19) 16a (cid:18) − Z2(1(cid:19)3) 1 ThefirsttermisthecontributionfromV andthusitisthe ~ω + mω2z2+gNn¯ φ(z)2 =µ, r V − ⊥ 2 z 2| | ∈ − onlyonethatcontributessignificantlyintheχ1 1limit. ≪ Onthecontrary,thesecondterm,whichisthecontribution withψ = 0elsewhere. Thenormalizationofψleadsto from V , gives the dominant contribution in the χ 1 + 1 ≫ limit,ingoodagreementwithpreviousresults[11]. 1 1 a Figure 2 shows the theoretical predictions for the (√λZ)5+ (√λZ)3 = Nλ , (10) 15 3 a ground-state properties of arbitrary cigar-shaped conden- ⊥ sates with λ 2, obtained from Eqs. (8) and (11)–(13) where Z Z/a and R R/a . The chemical poten- ≪ z ⊥ (solid lines), alongwith exactnumericalresults (opencir- ≡ ≡ tial µ ≡ µ/~ω⊥ is given by µ = 1 + 21(√λZ)2. Now cles). the relevantparameterdeterminingthe ground-stateprop- Finally, we consider a BEC in a disk-shaped trap with (e1rt0i)esleiasdχs1to≡µN=λa1/(1a5⊥χ. W)2h/e5nanχd1Z≫=1λ(T−F1/r2e(g1i5mχe),)1E/q5.. bλat≫ive2reagnidmaez, w≫hicah. oIncctuhrisscwahseen, iχnthemNeaan/-λfi2ealdpetu1r-, 2 1 1 2 ≡ z ≪ Whenχ 1(mean-fieldquasi-1Dregime), oneobtains thesystemreducestoaquasi-2Dcondensatesatisfying 1 ≪ 4 5 2 χ = 1.0 1 1 2 2~ωz + 2mω⊥2r⊥2 +g2DN|ϕ(r⊥)|2 = µ, (14) 4 1,5 µ 1,5 µ wpmgeκiart−2lhiu1znn¯agit21tiD,olenwn=fghatechrtegoa/rnn¯,√da1nκ2d=π−2p1ar1≡zo/p[2o1as3ez2].t/ihsπeWaifsoeultnlhtoihefweoainrpnmpgrreaomwnpersriaaitanetzte:dgre2enDnsoiatrys- 23 µεpToFt 0 0 ε µ TF 1 1r/ λ√⊥ p int 0,5 1 1 1 ε mω2z2+ mω2r2 +gN ψ(r ,z) 2 =µ, r V kin 2 z 2 ⊥ ⊥ | ⊥ | ∈ + 0 0 0 5 10 15 20 0 0,1 0,2 0,3 1 1 χ a a n ~ω + mω2r2 +gκ−1Nn¯ ϕ(r )2 =µ, r V 2 z 2 2 z 2 ⊥ ⊥ 2 1| ⊥ | ∈ − (15) FIG.3:(Coloronline)Theoreticalpredictionfortheground-state propertiesofarbitrarydisk-shapedcondensateswithλ≫2(solid with ψ = 0 elsewhere. In the above equations, V (r ,z): r2/R2 +z2/Z2 1 z > z andV+ ≡ lines).Theopencirclesareexactnumericalresultsobtainedwith { ⊥ ⊥ TF ≤ ∧ | | 0} − ≡ λ=20. ThedashedlineistheTFprediction. (r ,z): r R z z ,wherez = a ,R = ⊥ ⊥ 0 0 z TF { ≤ ∧ | | ≤ } 2µ/~ω √λa , R = 2(µ/~ω 1/2)√λa , and z ⊥ z ⊥ − Z = 2µ/~ω a . More precisely, one expects κ−1 p z z p 2 → 2/π intheperturbativeregime(χ 1),whileκ−1 1inthpeTFregime(χ 1). Thefin2a≪lresultsareno2tve→ry ξ[2µ (r ) 1] [2µ (r )]3/2 1 spensitive to the specifi2c≫functional form of κ−21. We thus n2(r⊥) = 4zπa⊥az− + z 6π⊥aaz − , (20) proposeoneofthesimplestpossibilities: 2 whereξ (κ 1)and2µ (r ) 1+R (1 r2/R2). ≡ 2− z ⊥ ≡ λ − ⊥ InFig. 3weshowtheground-statepropertiesofarbitrary κ−1(χ ) 2/π +Θ(χ 0.1) 2 2 ≡ 2− disk-shaped condensates with λ 2, obtained from our ≫ p RTF(χ2 = 0.1) analytical formulas [Eqs. (8) and (18)–(20)] (solid lines), 1 2/π 1 , (16) × − − R (χ ) alongwithexactnumericalresults(opencircles). (cid:18) TF 2 (cid:19) (cid:16) p (cid:17) In conclusion, modifying the usual TF approximation where Θ(x) is the Heaviside function and R (χ ) = TF 2 conveniently to account for the zero-point energy contri- (15χ )1/5a is the TF radius. The normalization of ψ 2 ⊥ bution,we havederivedgeneralanalyticalexpressionsfor yields theground-statepropertiesofspherical,cigar-shaped,and disk-shapedcondensatesthatreducetothecorrectanalyti- 4 2 calformulasinboththeTFandthemean-fieldperturbative 1 5 1 R R 1 Na Z + (κ 1) = , (17) regimes and remain valid and accurate in between these 15 8 2− λ2 − 6λ − 15 λ2a z two limiting cases. Mean-fieldquasi-1Dand-2Dconden- whereZ Z/a ,R R/a ,andZ2 R2/λ = 1. The satesappearassimpleparticularcasesofourformulation. z ⊥ chemical≡potentialisµ≡ µ/~ω = 1(1−+R2/λ). This work has been supported by MEC (Spain) and ≡ z 2 FEDERfund(EU)(ContractNo. Fis2005-02886). Forχ 1Eq. (17)leadstotheusualTFresults,while 2 ≫ forχ 1(mean-fieldquasi-2Dregime),oneobtainsµ = 2 ≪ 1/2+(2 2/πχ )1/2 andR = λ1/2(8 2/πχ )1/4. An 2 2 approximatesolutionthatsatisfiesEq. (17)witharesidual errorlesspthan0.95%foranyχ [0, p)isgiven by ∗ Electronicaddress: [email protected] 2 ∈ ∞ † Electronicaddress: [email protected] −1/8 R R/√λ = (1/15χ )8/5+(κ /8χ )2 (18) [1] M.H.Andersonetal.,Science269,198(1995). λ 2 2 2 ≡ [2] K.B.Davisetal.,Phys.Rev.Lett.75,3969(1995). After some calcuhlation one finds the followiing expres- [3] C.C.Bradleyetal.,Phys.Rev.Lett.78,985(1997). sionsforthemean-fieldinteractionenergyǫ ǫ /~ω [4] G.BaymandC.J.Pethick,Phys.Rev.Lett.76,6(1996). int ≡ int z [5] Forareviewsee,forexample,F.Dalfovo,S.Giorgini,L.P. andthecondensatedensityperunitarean (r ): 2 ⊥ Pitaevskii,andS.Stringari,Rev.Mod.Phys.71,463(1999). [6] A.L.Fetter,J.LowTemp.Phys.106,643(1997). 1 8Z7 R6 R4 4R2 8 [7] P.SchuckandX.Vin˜as,Phys.Rev.A61,43603(2000). ǫint = +ξ λ λ λ [8] Given P(R) = χ, we define the residual error associated 8χ2 105 6 − 3 − 15 − 105! withtheapproximatesolutionRεas[P(Rε)−χ]/χ. (19) [9] D.S.Petrovetal.,Phys.Rev.Lett.85,3745(2000). 5 [10] V.Dunjko,V.Lorent,andM.Olshanii,Phys.Rev.Lett.86, [12] M.Olshanii,Phys.Rev.Lett.81,938(1998). 5413(2001). [13] D.S.Petrovetal.,Phys.Rev.Lett.84,2551(2000). [11] C. Menotti and S. Stringari, Phys. Rev. A 66, 043610 (2002).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.