ebook img

Electromagnetic field theory PDF

213 Pages·2002·1.04 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electromagnetic field theory

“main” i i2002/10/31 page1 i i (cid:0) (cid:1) (cid:0) ¡ Bo ThidØ U p s i l o n B o o k s i i i i “main” i i2002/10/31 page2 i i i i i i “main” i i2002/10/31 page3 i i ¡ ELECTROMAGNETIC FIELD THEORY Bo Thidé i i i i “main” i i2002/10/31 page4 i i Alsoavailable ELECTROMAGNETIC FIELD THEORY EXERCISES by TobiaCarozzi,AndersEriksson,BengtLundborg, BoThidéandMattiasWaldenvik i i i i “main” i i2002/10/31 page1 i i E LECTROMAGNETIC F T IELD HEORY o hide B T ´ SwedishInstituteofSpacePhysics and Department ofAstronomyandSpace Physics Uppsala University,Sweden and SchoolofMathematics andSystemsEngineering Va¨xjo¨ University,Sweden ¡ Upsilon Books Communa AB Uppsala Sweden (cid:1) (cid:1) (cid:1) i i i i “main” i i2002/10/31 page2 i i ThisbookwastypesetinLATEX2" (basedonTEX3.14159andWeb2C7.3.9) onanHPVisualize9000/360workstationrunningHP-UX11.11. Copyright©1997,1998,1999,2000,2001and2002by BoThidé Uppsala,Sweden Allrightsreserved. ElectromagneticFieldTheory ISBNX-XXX-XXXXX-X i i i i “main” i i2002/10/31 pagei i i Contents Preface xi 1 ClassicalElectrodynamics 1 1.1 Electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Coulomb’slaw . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Theelectrostaticfield . . . . . . . . . . . . . . . . . . . 3 1.2 Magnetostatics . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Ampère’slaw . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Themagnetostaticfield . . . . . . . . . . . . . . . . . . 7 1.3 Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Equationofcontinuityforelectriccharge . . . . . . . . 10 1.3.2 Maxwell’sdisplacementcurrent . . . . . . . . . . . . . 10 1.3.3 Electromotiveforce . . . . . . . . . . . . . . . . . . . . 11 1.3.4 Faraday’slawofinduction . . . . . . . . . . . . . . . . 12 1.3.5 Maxwell’smicroscopicequations . . . . . . . . . . . . 15 1.3.6 Maxwell’smacroscopicequations . . . . . . . . . . . . 16 1.4 ElectromagneticDuality . . . . . . . . . . . . . . . . . . . . . 16 Example1.1 Faraday’slawasaconsequenceofconserva- tionofmagneticcharge . . . . . . . . . . . . . 18 Example1.2 Dualityoftheelectromagnetodynamicequations 19 Example1.3 Dirac’ssymmetrisedMaxwellequationsfora fixedmixingangle . . . . . . . . . . . . . . . . 20 Example1.4 Thecomplexfieldsix-vector . . . . . . . . . 21 Example1.5 Dualityexpressedinthecomplexfieldsix-vector22 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2 ElectromagneticWaves 25 2.1 TheWaveEquations . . . . . . . . . . . . . . . . . . . . . . . 26 2.1.1 ThewaveequationforE . . . . . . . . . . . . . . . . . 26 2.1.2 ThewaveequationforB . . . . . . . . . . . . . . . . . 26 2.1.3 Thetime-independentwaveequationforE . . . . . . . 27 Example2.1 Waveequationsinelectromagnetodynamics . . 28 2.2 PlaneWaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.1 Telegrapher’sequation . . . . . . . . . . . . . . . . . . 31 2.2.2 Wavesinconductivemedia . . . . . . . . . . . . . . . . 32 i i i i i “main” i i2002/10/31 pageii i i ii CONTENTS 2.3 ObservablesandAverages . . . . . . . . . . . . . . . . . . . . 34 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 ElectromagneticPotentials 37 3.1 TheElectrostaticScalarPotential . . . . . . . . . . . . . . . . . 37 3.2 TheMagnetostaticVectorPotential . . . . . . . . . . . . . . . . 38 3.3 TheElectrodynamicPotentials . . . . . . . . . . . . . . . . . . 38 3.3.1 Electrodynamicgauges . . . . . . . . . . . . . . . . . . 40 Lorentzequationsfortheelectrodynamicpotentials . . . 40 Gaugetransformations . . . . . . . . . . . . . . . . . . 41 3.3.2 Solution of the Lorentz equations for the electromag- neticpotentials . . . . . . . . . . . . . . . . . . . . . . 42 Theretardedpotentials . . . . . . . . . . . . . . . . . . 46 Example3.1 Electromagnetodynamicpotentials . . . . . . 46 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 RelativisticElectrodynamics 49 4.1 TheSpecialTheoryofRelativity . . . . . . . . . . . . . . . . . 49 4.1.1 TheLorentztransformation . . . . . . . . . . . . . . . 50 4.1.2 Lorentzspace . . . . . . . . . . . . . . . . . . . . . . . 51 Radiusfour-vectorincontravariantandcovariantform . 52 Scalarproductandnorm . . . . . . . . . . . . . . . . . 52 Metrictensor . . . . . . . . . . . . . . . . . . . . . . . 53 Invariantlineelementandpropertime . . . . . . . . . . 54 Four-vectorfields . . . . . . . . . . . . . . . . . . . . . 56 TheLorentztransformationmatrix . . . . . . . . . . . . 56 TheLorentzgroup . . . . . . . . . . . . . . . . . . . . 56 4.1.3 Minkowskispace . . . . . . . . . . . . . . . . . . . . . 57 4.2 CovariantClassicalMechanics . . . . . . . . . . . . . . . . . . 59 4.3 CovariantClassicalElectrodynamics . . . . . . . . . . . . . . . 61 4.3.1 Thefour-potential . . . . . . . . . . . . . . . . . . . . 61 4.3.2 TheLiénard-Wiechertpotentials . . . . . . . . . . . . . 62 4.3.3 Theelectromagneticfieldtensor . . . . . . . . . . . . . 64 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5 ElectromagneticFieldsandParticles 69 5.1 ChargedParticlesinanElectromagneticField . . . . . . . . . . 69 5.1.1 Covariantequationsofmotion . . . . . . . . . . . . . . 69 Lagrangeformalism . . . . . . . . . . . . . . . . . . . 70 Hamiltonianformalism . . . . . . . . . . . . . . . . . . 72 Downloadedfromhttp://www.plasma.uu.se/CED/Book Draftversionreleased31stOctober2002at14:46. i i i i “main” i i2002/10/31 pageiii i i iii 5.2 CovariantFieldTheory . . . . . . . . . . . . . . . . . . . . . . 76 5.2.1 Lagrange-Hamiltonformalismforfieldsandinteractions 76 Theelectromagneticfield . . . . . . . . . . . . . . . . . 80 Example5.1 Fieldenergydifferenceexpressedinthefield tensor . . . . . . . . . . . . . . . . . . . . . . 81 Otherfields . . . . . . . . . . . . . . . . . . . . . . . . 84 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6 ElectromagneticFieldsandMatter 87 6.1 ElectricPolarisationandDisplacement . . . . . . . . . . . . . . 87 6.1.1 Electricmultipolemoments . . . . . . . . . . . . . . . 87 6.2 MagnetisationandtheMagnetisingField. . . . . . . . . . . . . 90 6.3 EnergyandMomentum . . . . . . . . . . . . . . . . . . . . . . 92 6.3.1 TheenergytheoreminMaxwell’stheory . . . . . . . . 92 6.3.2 ThemomentumtheoreminMaxwell’stheory . . . . . . 93 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7 ElectromagneticFieldsfromArbitrarySourceDistributions 97 7.1 TheMagneticField . . . . . . . . . . . . . . . . . . . . . . . . 99 7.2 TheElectricField . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.3 TheRadiationFields . . . . . . . . . . . . . . . . . . . . . . . 103 7.4 RadiatedEnergy. . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.4.1 Monochromaticsignals . . . . . . . . . . . . . . . . . . 106 7.4.2 Finitebandwidthsignals . . . . . . . . . . . . . . . . . 107 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8 ElectromagneticRadiationandRadiatingSystems 109 8.1 RadiationfromExtendedSources . . . . . . . . . . . . . . . . 109 8.1.1 Radiationfromaone-dimensionalcurrentdistribution . 110 8.1.2 Radiationfromatwo-dimensionalcurrentdistribution . 113 8.2 MultipoleRadiation . . . . . . . . . . . . . . . . . . . . . . . . 116 8.2.1 TheHertzpotential . . . . . . . . . . . . . . . . . . . . 116 8.2.2 Electricdipoleradiation . . . . . . . . . . . . . . . . . 120 8.2.3 Magneticdipoleradiation . . . . . . . . . . . . . . . . 122 8.2.4 Electricquadrupoleradiation . . . . . . . . . . . . . . . 123 8.3 RadiationfromaLocalisedChargeinArbitraryMotion . . . . . 124 8.3.1 TheLiénard-Wiechertpotentials . . . . . . . . . . . . . 125 8.3.2 Radiationfromanacceleratedpointcharge . . . . . . . 127 Thedifferentialoperatormethod . . . . . . . . . . . . . 129 Example8.1 Thefieldsfromauniformlymovingcharge . . 134 Draftversionreleased31stOctober2002at14:46. Downloadedfromhttp://www.plasma.uu.se/CED/Book i i i i “main” i i2002/10/31 pageiv i i iv CONTENTS Example8.2 Theconvectionpotentialandtheconvectionforce136 Radiationforsmallvelocities . . . . . . . . . . . . . . 139 8.3.3 Bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . 140 Example8.3 Bremsstrahlungforlowspeedsandshortac- celerationtimes . . . . . . . . . . . . . . . . . 143 8.3.4 Cyclotronandsynchrotronradiation . . . . . . . . . . . 145 Cyclotronradiation . . . . . . . . . . . . . . . . . . . . 147 Synchrotronradiation. . . . . . . . . . . . . . . . . . . 148 Radiationinthegeneralcase . . . . . . . . . . . . . . . 150 Virtualphotons . . . . . . . . . . . . . . . . . . . . . . 151 8.3.5 Radiationfromchargesmovinginmatter . . . . . . . . 153 Vavilov-Cˇerenkovradiation . . . . . . . . . . . . . . . 155 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 F Formulae 161 F.1 TheElectromagneticField . . . . . . . . . . . . . . . . . . . . 161 F.1.1 Maxwell’sequations . . . . . . . . . . . . . . . . . . . 161 Constitutiverelations . . . . . . . . . . . . . . . . . . . 161 F.1.2 Fieldsandpotentials . . . . . . . . . . . . . . . . . . . 161 Vectorandscalarpotentials . . . . . . . . . . . . . . . 161 Lorentz’gaugeconditioninvacuum . . . . . . . . . . . 162 F.1.3 Forceandenergy . . . . . . . . . . . . . . . . . . . . . 162 Poynting’svector . . . . . . . . . . . . . . . . . . . . . 162 Maxwell’sstresstensor . . . . . . . . . . . . . . . . . . 162 F.2 ElectromagneticRadiation . . . . . . . . . . . . . . . . . . . . 162 F.2.1 Relationshipbetweenthefieldvectorsinaplanewave . 162 F.2.2 Thefarfieldsfromanextendedsourcedistribution . . . 162 F.2.3 Thefarfieldsfromanelectricdipole . . . . . . . . . . . 162 F.2.4 Thefarfieldsfromamagneticdipole . . . . . . . . . . 163 F.2.5 Thefarfieldsfromanelectricquadrupole . . . . . . . . 163 F.2.6 Thefieldsfromapointchargeinarbitrarymotion . . . . 163 F.3 SpecialRelativity . . . . . . . . . . . . . . . . . . . . . . . . . 163 F.3.1 Metrictensor . . . . . . . . . . . . . . . . . . . . . . . 163 F.3.2 Covariantandcontravariantfour-vectors . . . . . . . . . 164 F.3.3 Lorentztransformationofafour-vector . . . . . . . . . 164 F.3.4 Invariantlineelement . . . . . . . . . . . . . . . . . . . 164 F.3.5 Four-velocity . . . . . . . . . . . . . . . . . . . . . . . 164 F.3.6 Four-momentum . . . . . . . . . . . . . . . . . . . . . 164 F.3.7 Four-currentdensity . . . . . . . . . . . . . . . . . . . 164 F.3.8 Four-potential . . . . . . . . . . . . . . . . . . . . . . . 164 Downloadedfromhttp://www.plasma.uu.se/CED/Book Draftversionreleased31stOctober2002at14:46. i i i i

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.