Electric Road Systems for Trucks Sanna Andersson Erica Edfeldt Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2013-047MSC Division of Energy Technology SE-100 44 STOCKHOLM 2 Master of Science Thesis EGI-2013-047MSC Electric Road Systems for Trucks Sanna Andersson Erica Edfeldt Approved Examiner Supervisor 2013-06-18 Per Lundqvist Jon-Erik Dahlin Commissioner Contact person Scania AB Nils-Gunnar Vågstedt Abstract An increased use of electricity in vehicles is considered an alternative to decrease the usage of fossil fuels. For private cars, plug-in electric vehicles using batteries are continuously being improved. However, the battery technology of today is not sufficient for trucks if they are to use only electricity. The battery technology is not sufficient to be able to supply the truck with enough propulsion energy to perform an entire drive. However, the hybrid drive technology enables a power recovery and charges the battery when the vehicle applies its brakes. The fuel usage can thereby be decreased through the energy recovery. This master thesis examines the potential of electric road systems, ERSs, which enables a continuous electricity supply to the vehicle when in motion. Similar technologies as an ERS has been used for a long time for trams, trolleybuses and trains, and historically there have also existed cases of electric truck systems. In this thesis the potential for ERSs is examined from the haulage contractor companies’ perspective, which would be users of this system. The potential is in regard to the energy usage per km, the CO emissions 2 per km and the cost per km for an ERS vehicle (a hybrid vehicle using an ERS) compared to a hybrid vehicle and to a conventional vehicle. The cost per km includes energy cost, cost for using the ERS infrastructure and the additional vehicle cost. The method used in this study was first to create a broad picture of the concept of ERSs through reading articles, reports, web pages and through conducting interviews with stakeholders within the ERS market. The second part of the method was to create a technology model and an economic model. The models investigate the potential for ERSs through three different cases: a Distribution Case, a Long-Haulage Case and a Mining Case. For all three cases, the energy usage, the cost and the CO emissions per km for using 2 a conventional vehicle, a hybrid vehicle and ERS vehicle were generated. Four alternative future scenarios were also tested, in which factors such as energy costs and infrastructure costs were varied. The results show the energy usage, the CO emissions and the profitability from the haulage contractor 2 companies’ perspective. The results show that ERSs are not profitable for the Distribution Case in any of the tested scenarios. For the Long-Haulage Case, however, it is profitable in four out of the five tested scenarios. The Mining Case shows mixed profitability results, many times being just above or just below profitable. The energy usage decreased for all the cases and scenarios. Because of this, in combination with the relatively clean electricity production in Sweden, the decrease in CO emissions is very large. The 2 3 conclusions from this thesis are therefore that long-haulage routes show great potential for using ERSs, mining cases have some potential for using ERSs and if distribution routes are to use ERSs this would be only for lowered fossil fuel usage and environmental purposes. 4 Sammanfattning För att minska användandet av fossila bränslen anses ökad användning av elektricitet i fordon vara ett potentiellt alternativ. För laddelbilar inom personbilssektorn förbättras batteritekniken ständigt. Dock ser inte batteriteknikens utveckling ut att vara tillräcklig för lastbilar om de ska kunna köra på enbart el. Även om batteritekniken inte är tillräcklig för att lastbilen ska kunna köra på enbart el så kan batterier användas i lastbilshybrider. Hybridsystemet möjliggör en energiåtervinning där batteriet kan laddas när fordonet bromsar. Bränsleanvändningen kan därmed minskas genom energiåtervinningen. Detta examensarbete utreder potentialen för elektriska vägsystem. Elektriska vägsystem möjliggör kontinuerlig överföring av elektricitet till lastbilar medan de kör. Liknande tekniker har länge använts för spårvagnar, trådbussar, tåg och även i viss utsträckning för trådlastbilar. I detta examensarbete utreds potentialen för elektriska vägsystem utifrån åkeriers perspektiv, eftersom dessa i så fall kommer att vara de som använder systemet. Potentialen bedöms genom att jämföra energianvändning per kilometer, CO -utsläpp per kilometer och 2 kilometerkostnad för en elvägslastbil jämfört med en konventionell lastbil och jämfört med en hybridlastbil. Kilometerkostnaden innefattar energikostnad, kostnad för att använda elvägsinfrastrukturen och den ytterligare fordonskostnaden. Metoden som användes i denna studie var först att skapa en bred bild av konceptet elektriska vägsystem genom att läsa artiklar, rapporter, hemsidor och att utföra intervjuer med aktörer inom elektriska vägsystem. Den andra delen av metoden var att skapa en ekonomisk och teknisk modell. Tre olika fall modellerades: ett distributionsfall, ett fjärrtrafikfall och ett gruvtransportfall. För dessa tre fall så genererades energianvändningen, CO -utsläppen och kostnaden per km vid användning av en 2 konventionell lastbil, en hybridlastbil och en hybrid som använder elektriska vägsystem. Fyra alternativa framtidsscenarion testades också, för vilka parametrar såsom energikostnader och infrastrukturkostnader varierades. Alla resultat visar energianvändningen, CO -utsläppen och lönsamheten utifrån ett åkeriperspektiv. 2 Resultaten visar att elektriska vägsystem inte är lönsamma för distributionsfallet i något av de testade scenarierna. För fjärrtrafik är det lönsamt i fyra av de fem testade scenarierna. Gruvtrafikfallet visar på blandade resultat, där det ofta är precis lönsamt eller nästan lönsamt med elektriska vägsystem. Energianvändningen minskar för alla fall och scenarier. Detta tillsammans med Sveriges relativt rena elektricitetsproduktion innebär att CO -utsläppen minskar kraftigt. Slutsatserna från detta examensarbete 2 är därför att fjärrtrafik påvisar stor potential för elektriska vägsystem, gruvtrafik har viss potential och distributionstrafik bör endast använda elektriska vägsystem av miljömässiga och fossilbränslereducerande skäl. 5 6 Acknowledgements We would like to express gratitude to Scania and the department of Energy Technology at the Royal Institute of Technology for enabling this master thesis. In particular, we would like to thank Nils-Gunnar Vågstedt, our supervisor at Scania, and all the co-workers at the department of Hybrid System Development that have been very helpful throughout the whole thesis process. Also, we would like to give a special thank to our supervisor at the Royal Institute of Technology, Jon-Erik Dahlin, for all his help and engagement during our thesis. We are also grateful for all the input we attained from Henrik Berg, Svante Holmdahl, Eva Iverfeldt, Per Sahlholm and Ove Sponton, and from interviewing Gunnar Asplund, Anders Berndtsson, Henrik Boding, Anders Gustavsson, Magnus Henke, Harry Frank, Torbjörn Heierson, Per Kågeson, Magnus Myrbäck, Carina Nilsson, Anders Nordqvist and Per Ranch. 7 8 Table of Contents Abstract ........................................................................................................................................................................... 3 Sammanfattning ............................................................................................................................................................. 5 Acknowledgements ....................................................................................................................................................... 7 List of Tables .............................................................................................................................................................. 13 List of Figures ............................................................................................................................................................. 16 Nomenclature and Abbreviations ........................................................................................................................... 20 1 Introduction ......................................................................................................................................................... 23 1.1 Background .................................................................................................................................................. 23 1.2 Purpose ......................................................................................................................................................... 24 1.3 Limitations ................................................................................................................................................... 24 1.4 Method ......................................................................................................................................................... 24 2 Literature Review ................................................................................................................................................ 28 2.1 Energy Usage in the Transportation Sector ........................................................................................... 28 2.1.1 Historical Energy Usage in the Transportation Sector .................................................................. 28 2.1.2 Todays Energy Usage in the Transportation Sector ...................................................................... 29 2.1.3 Future Energy Usage in the Transportation Sector ....................................................................... 31 2.2 Technology .................................................................................................................................................. 31 2.2.1 The Conventional Vehicle .................................................................................................................. 31 2.2.2 The Hybrid Vehicle ............................................................................................................................. 33 2.2.3 The Electric Road System .................................................................................................................. 35 2.2.4 The Power Grid ................................................................................................................................... 42 2.3 Stakeholders ................................................................................................................................................. 45 2.3.1 The Haulage Contractor Companies ................................................................................................ 46 2.3.2 The Vehicle Industry ........................................................................................................................... 48 2.3.3 The Electric Road System Companies ............................................................................................. 49 2.3.4 The Political Stakeholders and the Potential Investors ................................................................. 49 2.3.5 The Society as a Whole and the Environment ............................................................................... 49 2.4 Truck Fuel .................................................................................................................................................... 50 2.5 The Electricity Market and Mixture ......................................................................................................... 50 2.5.1 The Pricing of Electricity ................................................................................................................... 50 2.5.2 The Electricity Mix .............................................................................................................................. 52 2.6 Implementation of Electric Roads ........................................................................................................... 53 2.6.1 Responsibility for the Electric Roads ............................................................................................... 53 2.6.2 Initial Investment ................................................................................................................................ 53 9 2.6.3 User Costs ............................................................................................................................................. 53 2.6.4 Next Step .............................................................................................................................................. 54 2.6.5 Sweden and the EU ............................................................................................................................. 54 3 Cases ..................................................................................................................................................................... 55 3.1 ICA-loop: Distribution Case ..................................................................................................................... 55 3.2 Stockholm-Gothenburg: Long-Haulage Case ........................................................................................ 56 3.3 Pajala: Mining Case ..................................................................................................................................... 58 4 Model .................................................................................................................................................................... 61 4.1 Conceptual Model ....................................................................................................................................... 61 4.2 Qualitative and Quantitative Model ......................................................................................................... 62 4.2.1 Technology Model ............................................................................................................................... 62 4.2.2 Economic Model ................................................................................................................................. 74 5 Results ................................................................................................................................................................... 82 5.1 Results for the Distribution Case ............................................................................................................. 82 5.1.1 The Conventional Vehicle in the Distribution Case ...................................................................... 82 5.1.2 The Hybrid Vehicle in the Distribution Case ................................................................................. 82 5.1.3 The Electric Road System Vehicle in the Distribution Case ........................................................ 84 5.1.4 Sustainability Results for the Distribution Case ............................................................................. 87 5.2 Results for the Long-Haulage Case .......................................................................................................... 88 5.2.1 The Conventional Vehicle in the Long-Haulage Case .................................................................. 89 5.2.2 The Hybrid Vehicle in the Long-Haulage Case .............................................................................. 89 5.2.3 The Electric Road System Vehicle in the Long-Haulage Case ..................................................... 91 5.2.4 Sustainability Results for the Long-Haulage Case .......................................................................... 93 5.3 Results for the Mining Case ...................................................................................................................... 94 5.3.1 The Conventional Vehicle in the Mining Case ............................................................................... 94 5.3.2 The Hybrid Vehicle in the Mining Case .......................................................................................... 94 5.3.3 The ERS Vehicle in the Mining Case ............................................................................................... 96 5.3.4 Sustainability Results for the Long-Haulage Case .......................................................................... 98 5.4 Break-Even Points ...................................................................................................................................... 98 6 Scenario Analysis ............................................................................................................................................... 101 6.1 Scenario Descriptions .............................................................................................................................. 101 6.2 Scenario Results ........................................................................................................................................ 103 7 Sensitivity Analysis ............................................................................................................................................ 108 8 Discussion .......................................................................................................................................................... 113 8.1 Discussion of Base Scenario ................................................................................................................... 113 8.2 Discussion of Scenarios ........................................................................................................................... 115 8.3 Discussion Haulage Contractor Companies ......................................................................................... 116 10
Description: