ebook img

Eccentric double white dwarfs as LISA sources in globular clusters PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Eccentric double white dwarfs as LISA sources in globular clusters

DRAFTVERSIONFEBRUARY1,2008 PreprinttypesetusingLATEXstyleemulateapjv.03/07/07 ECCENTRICDOUBLEWHITEDWARFSASLISASOURCESINGLOBULARCLUSTERS B.WILLEMS1,V.KALOGERA1,A.VECCHIO1,2,N.IVANOVA3,F.A.RASIO1,J.M.FREGEAU1,K.BELCZYNSKI4,5 DraftversionFebruary1,2008 ABSTRACT Weconsidertheformationofdoublewhitedwarfs(DWDs)throughdynamicalinteractionsinglobularclus- ters. Such interactions can give rise to eccentric DWDs, in contrast to the exclusively circular population expectedtoformintheGalacticdisk. Weshowthatfora5-yearLaserInterferometerSpaceAntenna(LISA) missionanddistancesasfarastheLargeMagellanicCloud,multipleharmonicsfromeccentricDWDscanbe 8 detectedatasignal-to-noiseratiohigherthan8foratleastahandfulofeccentricDWDs,giventheirformation 0 0 rateandtypicallifetimesestimatedfromcurrentclustersimulations.Consequentlytheassociationofeccentric- 2 itywithstellar-massLISAsourcesdoesnotuniquelyinvolveneutronstars,asisusuallyassumed. Duetothe difficultyofdetecting(eccentric)DWDswithpresentandplannedelectromagneticobservatories,LISAcould n provideuniquedynamicalidentificationsofthesesystemsinglobularclusters. a J Subjectheadings:Stars: Binaries: Close,Stars: WhiteDwarfs,GravitationalWaves 7 1 1. INTRODUCTION trophysicswithLISA. InthisLetter,weexploretheformationofDWDswithnon- ] Double white dwarf binaries (DWDs) are the single most h zero eccentricities(e>0.01)and orbitalperiodsP<5000s abundantanda guaranteedclassofgravitationalwave(GW) p through dynamical interactions in GCs, and assess their de- sources for the Laser Interferometer Space Antenna (LISA; - tectabilityby LISA. Since mass-transferringbinariesare not o Benderetal.1998). Theirformationencompassestwomass- expectedto retain appreciableeccentricitiesforlongperiods r transfer phases, with at least one leading to a common- t of time, we focus our attention on detached DWDs. While s envelopephase shrinkingthe orbitto periodsof 0.1–1000hr the importanceofstellar-mass binariesin GCs forLISA has a (Han1998;Nelemansetal.2001). Onceformed,orbitalan- [ gularmomentumlossesdueto GWemissionandtidalinter- beendiscussedpreviously(Benacquista1999,Benacquistaet actionscontinuetoshrinktheorbituntiltheleastmassiveWD al. 2001,Benacquista2001),thepossiblepresenceofeccen- 3 tricDWDsintheLISAbandhasnotbeenconsideredbefore. v fillsitsRochelobeandtransfersmasstoitscompanion. De- 7 pendingonthebinarymassratio,themasstransferleadstoa 2. DOUBLEWHITEDWARFSINGLOBULARCLUSTERS 8 fastmergeroralong-livedphaseoforbitalexpansion(Marsh 2 etal. 2004;Gokhaleetal. 2007,andreferencestherein). Ivanova et al. (2006) recently explored the formation and 4 As the progenitors of DWDs are tight enough to undergo evolution of WD binaries in GCs using an updated version . multiplemass-transferphases,tidalforcesareusuallythought of the Monte Carlo code described in Ivanova et al. (2005). 5 to circularize their orbits long before they form a DWD. In this study, we adopt these sample simulations to address 0 7 DWDs are therefore expected to be born with circular or- therelevanceofeccentricDWDsasLISAsources. Thecode 0 bits. However, dynamical interactions in globular clusters combines a simple two-zone core-halo GC model with the : (GCs) form DWDs at enhanced rates compared to the field STARTRACK binarypopulationsynthesiscode(Belczynskiet v (Shara & Hurley 2002). Through these interactions, DWDs al.2007)andtheFEWBODYsmallN-bodyintegrator(Fregeau i X canformwithnon-zeroeccentricities;thesecansubsequently at al. 2005) to treat dynamical interactions between single bedampedbyGWemission,butcanalsobeexcitedbyfly-by starsandbinaries. r a encounterswithsingleandbinarystars. Contrarytocommon Inthe simulations, the two mostimportanttypesof stellar assumptions,theidentificationofeccentricstellar-massbina- interactions creating eccentric DWDs in the LISA band are riesintheLISAGWdatastreamthereforedoesnotuniquely exchangeinteractions and physical collisions. Exchange in- identifythemasneutronstar(NS)binaries. teractions are a subset of the broader class of binary-single Due to their inherent faintness, DWDs are difficult to de- andbinary-binaryinteractions. Eccentric LISA DWDsform tect at GC distances or beyond, even with the SDSS, HST, throughthis channelbyexchangesbetweensingle WDs and orJWST inthefuture. LISAcouldthereforeprovideunique binaries with a WD component. During the exchange, the dynamicalidentificationsofeccentricDWDsinGCs. Asthe two WDs become bound, while the companionto the initial potential of studying WD interiors through tidal effects in- binaryWDisejectedfromthesystem. Theresultingbinaries creases dramatically with increasing orbital eccentricity, ec- have average post-exchange eccentricities e 0.8. Alterna- ≃ centricDWDs offera uniqueopportunityto studystellar as- tively, physicalcollisionsbetweenWDs andred giantsform eccentricDWDswhenthegiant’senvelopegetsdisruptedand 1NorthwesternUniversity, DepartmentofPhysicsandAstronomy,2131 itsdegeneratecorebecomesboundtotheinitiallysingleWD TechDrive,Evanston,IL60208,USA (Lombardiet al. 2006). LISA DWDs formedthis way have 2SchoolofPhysicsandAstronomy,UniversityofBirmingham,Edgbas- average post-collosion eccentricities e 0.5. We stress that ton,BirminghamB152TT,UK ≃ the quoted average eccentricities are for LISA DWDs only 3CanadianInstituteforTheoreticalAstrophysics,UniversityofToronto, 60St.George,Toronto,ONM5S3H8,Canada (average post-exchange and post-collision eccentricities for 4NewMexicoStateUniversity,DepartmentofAstronomy,1320Frenger theentireDWDpopulationarelower). Mall,LasCruces,NM88003,USA In addition to direct formation, we find that non-zero ec- 5TombaughFellow centricities of DWDs can be significantly enhanced through 2 B.Willemsetal. TABLE1 TABLE2 GLOBULARCLUSTERMODELPARAMETERS. STATISTICALPROPERTIESOFECCENTRICLISADWDS. GCmodel nc trh Z σ1 vesc GCmodel hNi P1 P2 P3 Typical 105 1.0 0.005 10 40 Typical 0.39(0.01) 0.32(0.01) 0.06 0.01 47Tuc-like 2.5×105 3.0 0.0035 11.5 57 47Tuc-like 1.9(0.03) 0.84(0.03) 0.55 0.29 Terzan5-like 8×105 0.93 0.013 11.6 49 Terzan5-like 1.6(0.03) 0.80(0.03) 0.48 0.22 trhN(GOyTrE),.m—etaGllCicictyorZe,nounme-bdeimrdenensisoitnyalnvce(lopcci-t3y),dihsaplef-rmsioanssσr1el(akxmatsio- 1n),tiamnde ibnilNiptaiOerseTnPEtN.h—etsheaMstacetoanlrereanssuptmoNbnedsurtchohNDDiWoWfDDecsscwaernietthrpicraetLsleIeSnatAsattDtawWnoyDhgsaivarmenndotnPiimocises.sdoNentuepmcrtoabbbealres- escapevelocityvesc(kms- 1). atadistanceof10kpcwithSNR>8,fora5yearLISAmissionandasingle time-delayinterferometryobservable. oneormultiplebinary-singlestarscatteringevents.Thesein- teractionsareeitherdistantfly-byencountersorclose,strong, 47Tuc-like,and80%fortheTerzan5-likeGCmodel. andpossibly resonantinteractions. Evenfor distantencoun- The hatched probability distribution functions (PDFs) in ters(atmorethan 5–10timesthebinaryseparation)andini- Fig. 1 show the statistical properties of the eccentric LISA tialeccentricitiese<0.1,Heggie&Rasio(1996)findthatthe DWDsinthethreeGCsimulations. Forallthreemodels,the relative changein eccentricity can be as high as 30%. Con- number of systems decreases monotonicallywith increasing sequently, the absolute eccentricity change in a given inter- orbital frequency ν =1/P. The abrupt drop in the number actionisinsignificantforcircularbinaries,butincreaseswith ofsystemsatlogν.- 3.7correspondstotheadoptedcut-off thebinary’seccentricityandthecumulativeeffectofmultiple orbital period of 5000s for sources in the LISA band. The interactions. On the otherhand, close and possibly resonant orbital eccentricity distributions (affected by post-formation interactions are rare, but can change the binary eccentricity GWemission)typicallypeakate 0.1anddecreaseslowly drasticallyinjustasingleencounter. ≃ toward higher values. In all three cases, there is a non- The possibility of forming eccentric DWDs through the negligible fraction of systems with e up to 0.7. The ma- above channelsis in stark contrast to DWDs in the Galactic ≃ jority of systems consists of at least one WD more mas- diskwhichareexpectedtobeinvariablycircular. Despitethe manydynamicalinteractions,circularbinariesstilldominate sive than 0.6M⊙. The total mass distributions therefore DWDpopulationsinGCs,althoughwewillshowinthenext peak at re∼latively high masses M1+M2 1.0–1.2M⊙. The ≃ sectionthatthenumberofeccentricDWDsis non-ngligible. chirpmassdistributionspeakat 0.3–0.4M⊙. Thetyp- M≃ ical merger lifetime τ of an eccentric LISA DWD is 10– CircularDWDbinariescouldinprinciplealsobecomeeccen- e>0 100Myr.However,asubstantialnumberofsystemsalsohave tricviabinary-singlestarencounters,althoughtheefficiency considerablyshorterlifetimesdownto 1Myr. oftheprocessissmall(Heggie&Rasio1996). Nevertheless, ∼ all possible eccentricity inducing effects are included in the 4. IMPLICATIONSFORLISA simulationsdescribedbelow, regardlessof their relativeeffi- ciency. Since the detectabilityandpropertiesof GWsignals Gravitationalwavesfrombinarieswithnon-zeroeccentric- fromeccentricDWDs are independentofthe detailsof their ityproduceradiationatfrequenciesthatareintegermultiples formation,wedonotdistinguishbetweenthedifferentforma- ofthe orbitalfrequency. To computethe LISA sensitivityto tionchannelsintheremainderofthispaper. eccentric DWDs, we model GWs at the leading quadrupole order.The(angle-averaged)SNRatwhichagivenbinarycan 3. MONTECARLOSIMULATIONS bedetectedoveranobservationtimeT isthengivenby obs We use simulations by Ivanova et al. (2006) to estimate h (f ) 2 the expected number of eccentric DWDs in the LISA band S/N 2 = S/N 2 = c,n n dlnf , (10- 4–10- 1Hz). Theoutcomeofthesimulationsdependson D(cid:0) (cid:1) E Xn D(cid:0) (cid:1)nE Xn Z (cid:20)hrms(fn)(cid:21) n theadoptedGCmodelparameters(e.g.,clustercoredensity, (1) metallicity)andstellarandbinaryevolutionparameterizations wherenlabelstheharmonicsatfrequency f nν, n (e.g.,initialmassesandorbitalelements,efficiencyoforbital ≃ angularmomentumlossmechanisms).WeconsiderthreeGC h =(πd)- 1 2E˙ /f˙ 1/2 (2) c,n n n modelsrepresentativeofa typicalGalactic, 47Tuc-like, and (cid:0) (cid:1) Terzan 5-like GC (see Table 1), and GC ages in the range is the characteristic amplitude of the n-th harmonic, and of 10–13Gyr. All stellar andbinaryevolutionaryphasesare h2rms(fn)=(20/3)Sh(fn)fnistheroot-meansquarevalueofthe treatedasinthestandardmodelofIvanovaetal.(2006). noiseaveragedoversourcepositionandorientation;Sh(fn)is theone-sidednoisespectraldensity,whichwecomputedus- The maximum number of eccentric DWDs present in the LISA band at any given time in the 10–13Gyr time inter- ing Larson’s online sensitivity curve generator6. In Eq. (2), ˙ val is 2, 8, and 7, for the typical, 47 Tuc-like, and Terzan EnisthetimederivativeoftheenergyradiatedinGWsatfre- 5-like GC models, respectively. Using the total number of quency fn nν,whichtolowestorderis ≃ systemsformedin the10–13Gyrtime window,wecalculate E˙ =(32/5)(2πν )10/3g(n,e). (3) the formation rates of eccentric LISA DWDs in the typical, n M 47Tuc-like, andTerzan5-likeGCmodelsto be 10- 8yr- 1, Here,g(n,e)isafunctionoftheorbitaleccentricitygivenby 3 10- 8yr- 1,and 5 10- 8yr- 1. ForeachGC≃model,the ˙ p≃rob×ability that N ec≃cent×ric LISA DWDs are present at any Eq.(20)inPeters&Mathews(1963).Theterm fn≃ndν/dt, totheleadingquadrupoleorder,is giventimeinthe10–13Gyragerangeisfurthermorewellfit- tedbyaPoissondistributionwithmean N listedinTable2. f˙ =96(10π)- 1 5/3(2πν)11/3F(e), (4) Itfollowsthattheprobabilitytofindatlehasti1eccentricDWD n M intheLISAbandis32%forthetypicalGalactic,84%forthe 6http://www.srl.caltech.edu/∼shane/sensitivity/ Eccentricdoublewhitedwarfsinglobularclusters 3 FIG. 1.—Statistical properties ofeccentric DWDs(e>0.01) in the LISAband (P<5000s). Hatched histograms represent the entire eccentric DWD population; greyshadedhistogramsrepresentthesubpopulationofsystemsforwhichatleast2harmonicsareindividually observablebyLISAatSNR>8, assuminga5yearLISAmission,adistanceof10kpc,andasingletime-delayinterferometryobservable.AsthePDFsarenormalizedtounity,theverticalscale variesfrompaneltopanel. whereF(e)=[1+(73/24)e2+(37/96)e4]/(1- e2)7/2.Thelat- ter functiontendsto unity for e 0, but can becomeof the → orderofafewfore-valuestypicalofthesystemsproducedin −19 10 oursimulations,e.g.F(0.2)=1.29andF(0.5)=4.88. Using Eqs. (1)-(4), we compute the number of detectable eccentricLISAsources,requiringthatatleasttwoharmonics e beindividuallyobservableatSNRof8orhigher.Thisthresh- d oldisconservative,sincewestilldonotexactlyknowhowthe plitu10−20 dataanalysiswillbecarriedout(notethatintheLISAlitera- m a ture a SNR=5 thresholdis usuallyconsidered). Thechoice ofassumingthatatleasttwoharmonicsareobservablesepa- rately,isdictatedbyreasonsofrobustness: froman analysis 10−21 pointofview,aneccentricDWDlookslikeacollectionofn "circular" (one single harmonic) binaries, with suitable am- plitudesandfrequencies.Thereisgrowingevidencethatdata 10−3 10−2 analysisschemesthatarealreadyinhandforcircularbinaries frequency / Hz (cf. e.g. Arnaudetal. 2007,andreferencestherein)willper- FIG. 2.—LISAsensitivitytoeccentricDWDsinthetypicalGalacticGC formwellatsuchmoderate-to-highSNR.Wecanthereforebe model. Thesolidlinesshowtheangle-averagedlevelofthermsnoise(thin: instrumentalnoise;thick: totalinstrumentalandgalacticforegroundnoise). confidentthateven an analysis, comprisingof a first pass of SquaresindicatetheamplitudesofDWDsforwhichatleasttwoharmonics thedatatosearchfor"circular"binaries,followedbyasecond canbedetected individually atSNR>8. Somesquares correspond tothe stageinwhichonelooksforamoreconsistentfittothedata samesystematdifferenttimesinitsevolution.Forillustration,thesolidstars by allowing that some signals are actually harmonics of the andcircles representtheharmonicsofaDWDwithmassesM1=0.74M⊙ same system is available. In practice, it is quite conceivable andM2=0.86M⊙ attwodifferent stagesofitsevolution: atP=872.64s ande=0.33(stars)andP=2211.84sande=0.74(circles). Inbothcases4 thata full-blownanalysisallowingfornon-negligibleeccen- harmonicsareobservableindividuallyatSNR>8,butalln=1,...,20har- tricitycanbecarriedoutfromthebeginning. Inthiscasethe monicsareplottedforillustration.Theamplitudesarefora5-yearmission,a numberofdetectablesystems perGC presentedhere is con- GCdistanceof10kpc,andasingleMichelsonobservable. servativeandshouldberegardedasalowerlimit. In Fig. 2, we show the detectability results for the typical Galactic GC model, adoptinga distance of 10kpc. The am- TABLE3 plitudeontheverticalaxisisthecharacteristicamplitudeh OBSERVABLEBINARIES. c,n multipliedbythesquarerootofmin[1,df /dt (T /f )]to n × obs n GCmodel Ntot Nobsat3kpc Nobsat10kpc Nobsat50kpc consistently account for the frequency band swept by each source(allthesystemsinoursimulationssatisfythecondition Typical 29 24(28) 17(27) 1(7) 47Tuc-like 102 72(96) 36(90) 9(24) df /dt (T /f )<1forT =5yr).Theheightofeachdot n obs n obs Terzan5-like 140 112(133) 79(127) 4(36) × abovethenoiselevelthenrepresentstherelevantSNRvalue NOTE. — Total number of eccentric LISA DWDs Ntot and number of [cf. Eq. (1)]. We consider Tobs =5 yrs, the current require- systemsNobswithatleasttwoharmonicsindividuallydetectablebyLISAat mentfortheminimummissionlifetime.Wealsouseonlyone distancesof3,10,and50kpcwithacoherentSNR>8fora5yearLISA Michelsonobservableintheanalysis;ifallsixDopplerlinks mission.BothNtotandNobsareintegratedovera10–13Gyragerange.Note thatessentiallyallsystemsinGCsatGalacticdistancesaredetectablewith are available over T , the SNR would increase by a factor obs atleastoneharmonic;thisnumberisprovidedwithinparenthesisintheNobs √2. Notethatonlysystemsforwhichatleasttwoharmon- columns. ≃ icshave (S/N)2 1/2>8areplottedinthefigure. h ni range from 24–112 for d =3kpc and 17–79 for d =10kpc. In Table 3, we list the number of detectable eccentric It is quite remarkablethat LISA has a high enoughsensitiv- DWDs formed in the 10–13Gyr age range, for distances ity to observe these systems throughoutthe Galaxy and, for d =3,10,50kpc. Dependingon the GC model, the numbers a very limited regionof the parameterspace, even up to the 4 B.Willemsetal. Large Magellanic Cloud. The probability to find at least 1 from electromagnetic observations allows the derivation of detectableeccentricDWD is1%forthetypicalGalactic GC chirp masses of GC binaries from the amplitude of their modeland3%forboththe47Tuc-likeandTerzan5-likeGC GW signals. Unfortunately, the identification of sources models (see Table 2). If we require only one harmonic to with GCs is severely hampered by LISA’s limited angu- be detectable, the probabilities increase by a factor of 2. lar resolution. In particular, the error box in the sky is Comparedtothefullpopulation,thedetectablesampleso∼fec- 1.6(5mHz/ν)2(10/SNR)2deg2(e.g.Takahashi&Seto2002≃) centric DWDs furthermore favor higher orbital frequencies, compared to a typical GC’s size of <0.002deg2. Indepen- total system masses, and chirp masses, and shorter system dentchirpmassandsourcedistancedeterminationstherefore lifetimes; relevantorbitaleccentricitiesspanthe entirerange relycompletelyonmeasurementsofintrinsic changesofthe frome 0.1to0.8(greyPDFsinFig.1). GW frequency during the observation time (e.g. Takahashi ≃ & Seto 2002), assuming the drifts are entirely due to gravi- 5. DISCUSSION tational radiation with no significant contribution from tidal InthisLetter,weexaminetheformationofeccentricDWDs and/ormagneticspin-orbitcoupling(e.g.Stroeeretal.2005). intheLISAbandthroughdynamicalinteractionsinGCs. Al- Itisthereforeinterestingtonotethat,dependingontheirphys- though the majority of cluster DWDs are circular, the exis- icalparametersand the phaseof evolutionatwhich theyare tenceofthisnon-negligiblepopulationis instark contrastto observed,thesystemsinoursimulationscanproduceobserv- the Galactic disk population expected to consist exclusively ablefrequencydrifts. of circular binaries. Owing to the non-zero orbital eccen- We conclude that the identification of eccentric binaries tricities, the DWDs emit GWs at multiple harmonics of the with LISA does not necessary imply association with NSs. orbitalfrequency. Fora5-yearLISAmission,wefindanon- Since binary component masses are difficult to derive from negligible number of systems for which multiple harmonics GWdata, a cleardiscriminationbetweenNS-WD orNS-NS aredetectableindividuallyatSNR>8,allowingthedetermi- andDWDbinariesfromLISAdatamaynotbepossible.How- nationoftheorbitaleccentricityfromthe ratioof theampli- ever,thenumberofeccentricNS-WDbinariesinthethreeGC tudesofthedetectedharmonics. models is an order of magnitude lower than the number of As a proof of principle, we show that for standard stellar eccentricDWDs, and NS-NS binariesare evenscarcer. Sta- andbinaryevolutionassumptions,47TucandTerzan5type tistically, an eccentricity detection therefore favors a DWD clusters are the most efficient eccentric DWD factories. For interpretation over a NS-WD or NS-NS interpretation. The these two types of GCs, there is an 80% probability that at formation of eccentric DWDs in GCs thus provides an ex- least oneeccentric DWD is presentin the LISA bandatany citingopportunitytostudyWD physicsinaccessiblethrough giventime.ForatypicalGalacticGC,thisprobabilityis32%. DWDs in the Galactic disk. Tidal effects particularly be- Moreover,foraGCat10kpc,theprobabilitythatoneormore come increasingly important with increasing orbital eccen- systemsare presentwith at leasttwo harmonicsindividually tricity,eitherthroughtheexcitationofdynamicaloscillations detectable at SNR>8 is 1% for a typical Galactic GC, and orthroughtheireffectsontheorbitalevolution. LISAcould 3% for 47 Tuc and Terzan 5 type GCs. Considering there provideuniquedynamicalidentificationsofeccentricDWDs, are79knownGCswithin10kpcfromtheSun(Harris1996), openingup a unique astrophysicalwindow to stellar and bi- we thus expect at least a handful of eccentric DWDs to be naryevolution. detectable by LISA. There are furthermore3 GCs within 2– 3kpcand15GCswithin5kpcfromtheSun. Fortheseclus- ters,theSNRincreasesbyafactorof 2–3. Thesenumbers This work is partially supported by a Packard Foundation ∼ mayevidentlyvarysignificantlywiththeadoptedstellarand Fellowship, a NASA BEFS grant (NNG06GH87G), and a binaryevolutionmodelparameters. Sinceourgoalwastoas- NSF CAREER grant (AST-0449558) to VK. FAR and JMF sessthefeasibilityofforminganddetectingeccentricDWDs acknowledgesupportfromNASA grantsNNG06GI62Gand inGCs, wechoseparameterswhicharecommoninstandard NNG04G176G, and from NSF grant PHY-0601995. Clus- populationsynthesismodels. tersimulationswereperformedonCITA’sSunnyvalecluster, In principle, the independent knowledge of GC distances fundedbytheCFIandtheORF-RI. REFERENCES Arnaud,K.A.,etal.2007,arXiv:gr-qc/0701139 Ivanova, N., Heinke, C. O., Rasio, F. A., Taam, R. E., Belczynski, K., & Belczynski,K.,etal.2007,inpress,arXiv:astro-ph/0511811 Fregeau,J.A.2006,MNRAS,372,1043 Bender,P.etal.1998LISAPre-PhaseAReport,2ndEd.(MPQ) Larson,S.L.2007,OnlineLISAsensitivitycurvegenerator Benacquista,M.1999,ApJ,520,233 Lombardi,J.C.,Jr.,Proulx,Z.F.,Dooley,K.L.,Theriault,E.M.,Ivanova, Benacquista, M.2001,20thTexas Symposiumonrelativistic astrophysics, N.,&Rasio,F.A.2006,ApJ,640,441 586,793 Marsh,T.R.,Nelemans,G.,&Steeghs,D.2004,MNRAS,350,113 Benacquista,M.J.,PortegiesZwart,S.,&Rasio,F.A.2001,Classicaland Nelemans,G.,Yungelson,L.R.,PortegiesZwart,S.F.,&Verbunt,F.2001, QuantumGravity,18,4025 A&A,365,491 Fregeau, J. M., Cheung, P., Portegies Zwart, S. F., & Rasio, F. A. 2004, Peters,P.C.,&Mathews,J.1963,Phys.Rev.,131,435 MNRAS,352,1 Peters,P.C.1964,Phys.Rev.,136,1224 Gokhale,V.,Peng,X.M.,&Frank,J.2007,ApJ,655,1010 Shara,M.M.,&Hurley,J.R.2002,ApJ,571,830 Han,Z.1998,MNRAS,296,1019 Stroeer,A.,Vecchio,A.&Nelemans,G. 2005,ApJ,633,L33 Harris,W.E.1996,AJ,112,1487 Takahashi,R.,&Seto,N.2002,ApJ,575,1030 Heggie,D.C.,&Rasio,F.A.1996,MNRAS,282,1064 Ivanova,N.,Belczynski,K.,Fregeau,J.M.,&Rasio,F.A.2005,MNRAS, 358,572

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.