REVIEWS in MINERALOGY and GEOCHEMISTRY Volume 74 2012 Applied Mineralogy of Cement & Concrete EDITORS Maarten A.T.M. Broekmans Geological Survey of Norway (NGU) Trondheim, Norway Herbert Pöllmann Martin Luther Universität Halle (MLU) HALLE (Saale), Germany ON THE COVER: Background image: polymict aggregate in concrete, containing several types of sand-/siltstone in various colors, black lydite, chert/fl int in various shades with and without cortex, white vein quartz and reddish quartzite, etc. Several lithologies behave alkali-reactive as revealed by internal cracking, presence of dark rims, etc. © Maarten ATM Broekmans. Front cover, top: Panorama of the Three Gorges Dam in China facing south, one of the largest concrete structures in the world, still under construction in October 2004. The dam with the Chinese characters on the right was temporary only, and was removed by blasting when the main structure was fi nished in 2009. © Maarten ATM Broekmans. Front cover, bottom: Rosette of layered double- hydrate (LDHt) phase in CAC. © Herbert Pöllmann. Series Editor: Jodi J. Rosso MINERALOGICAL SOCIETY of AMERICA GEOCHEMICAL SOCIETY Reviews in Mineralogy and Geochemistry, Volume 74 Applied Mineralogy of Cement & Concrete ISSN 1529-6466 ISBN 978-0-939950-88-1 Copyright 2012 The MINERALOGICAL SOCIETY of AMERICA 3635 Concorde Parkway, Suite 500 Chantilly, Virginia, 20151-1125, U.S.A. www.minsocam.org The appearance of the code at the bottom of the fi rst page of each chapter in this volume indicates the copyright owner’s consent that copies of the article can be made for personal use or internal use or for the personal use or internal use of specifi c clients, provided the original publication is cited. The consent is given on the condition, however, that the copier pay the stated per-copy fee through the Copyright Clearance Center, Inc. for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other types of copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. For permission to reprint entire articles in these cases and the like, consult the Administrator of the Mineralogical Society of America as to the royalty due to the Society. Applied Mineralogy of Cement & Concrete 74 Reviews in Mineralogy and Geochemistry 74 FROM THE SERIES EDITOR Several years in the making, Applied Mineralogy of Cement & Concrete was fi nally brought to completion in 2012 by the persistent efforts of the volume editors, Maarten Broekmans and Herbert Pöllmann. Their efforts are greatly appreciated. Any supplemental materials associated with this volume can be found at the MSA website, www.minsocam.org/MSA/RIM. Errata will also be posted there. The reader will also be able to fi nd links to paper and electronic copies of this and other RiMG volumes. Jodi J. Rosso, Series Editor West Richland, Washington April 2012 PREFACE Since its inception in 1974, the “Reviews in Mineralogy” (“–and Geochemistry” from 2000) series has published over seventy volumes covering a diverse range of topics from theoretical to applied, and from very specifi c to generic. The idea for this RiMG volume was initially conceived in 2006, and the revised proposal was approved by the MSA Council in 2009. ‘Building materials’ as a generic term encompasses steel, aluminum, copper and a range of metal alloys, glass and glaze, particulate materials like sand, gravel, or crushed rock, and natural stone of sedimentary, igneous or metamorphic origin. Each of these materials sees a wide range of applications, from structural/bearing via functional to merely ornamental and decorative. The wide range of ‘building materials’ application is achieved through an equally wide range of processing, from use ‘as is’ (e.g., stacking boulders to make a retaining wall), through simple re-dimensioning and fi tting (e.g., splitting and sizing of roofi ng slate) to purifi cation and complex treatment in multi-stage processing (e.g., glass, Portland cement clinker, concreting). The use of building materials, their applications and processing has changed considerably with the development of civilization and technology. Consequently, comprehensive coverage of building materials, applications, processing and history would require multiple volumes. The present RiMG volume contains a selection of papers on the applied mineralogy of cement and concrete, by far the most popular modern building material by volume, with an annual production exceeding 9 billion cubic meters, and steadily growing. Not even all ‘concrete’ topics can be covered by a single volume, but an interesting assortment was fi nally obtained. The seven chapters deal with mineralogy and chemistry of (alumina) clinker production and hydration (Pöllmann), alternative raw clinkering materials to reduce CO 2 1529-6466/12/0074-0000$05.00 DOI: 10.2138/rmg.2012.74.0 Applied Mineralogy of Cement & Concrete ‒ Preface emission (Justnes), assessment of clinker constituents by optical and electron microscopy (Stutzman), industrial assessment of raw materials, cement and concrete using X-ray methods in different applications (Meier et al.), in situ investigation of clinker and cement hydration based on quantitative crystallographic phase analysis (Aranda et al.), characterization and properties of supplementary cementitious materials (SCMs) to improve cement and concrete properties (Snellings et al.), and deleterious alkali-aggregate reaction (AAR) in concrete (Broekmans). Finding reliable volume contributors is never an easy task, and we are immensely grateful to all authors for their submissions and for keeping deadlines. We are also greatly indebted to RiMG Series Editor Jodi J. Rosso for editorial assistance and her responsiveness to quickly elucidate emerging copyright matters. Finally, we are thankful to our numerous ‘concrete colleagues’ in the fi eld, for having inspired us unknowingly during the many meetings and gatherings we have had with them through the years. Trondheim / Halle (Saale) late April 2012 Maarten A.T.M. Broekmans Geological Survey of Norway (NGU) Herbert Pöllmann Martin Luther Universität Halle (MLU) iv Applied Mineralogy of Cement & Concrete 74 Reviews in Mineralogy and Geochemistry 74 TABLE OF CONTENTS 1 Calcium Aluminate Cements – Raw Materials, Differences, Hydration and Properties Herbert Pöllmann INTRODUCTION ....................................................................................................................1 Raw materials ................................................................................................................1 MANUFACTURE OF CAC ....................................................................................................3 CHEMICAL AND MODAL MINERAL COMPOSITION .....................................................5 CALCIUM ALUMINATE CEMENT – PHASE DIAGRAMS ..............................................11 Mineralogical variability .............................................................................................13 CHEMICAL AND MINERALOGICAL PHASE COMPOSITION ......................................17 Calcium aluminates .....................................................................................................17 Calcium silicates ..........................................................................................................20 Calcium aluminum silicates and aluminum silicates ..................................................23 Calcium aluminum ferrites ..........................................................................................27 Compounds containing magnesium and other species ................................................30 HYDRATION OF CALCIUM ALUMINATE CEMENTS ....................................................36 Description of crystalline hydration products of CAC ................................................39 Descriptions of amorphous, pseudocrystalline and crystalline aluminum hydroxides and sulfur-containing phases .............................................43 Hydration mechanisms and setting of CAC ................................................................51 Hydration of CAC under the infl uence of different admixtures .................................54 CRYO-SEM INVESTIGATIONS OF CAC HYDRATION: MICROSTRUCTURE DEVELOPMENT ........................................................................56 Effects of LiCO accelerator on CAC hydration ........................................................59 2 3 Effect of Fe impurities on CAC hydration ..................................................................60 Hydration mixtures with different other materials ......................................................61 CAC - application and other cementitious mixtures ...................................................65 ACKNOWLEDGMENTS .......................................................................................................65 LITERATURE ........................................................................................................................65 v Applied Mineralogy of Cement & Concrete ‒ Table of Contents 2 Alternative Low-CO “Green” Clinkering Processes 2 Harald Justnes ABSTRACT ............................................................................................................................83 INTRODUCTION ..................................................................................................................83 CEMENT CHEMISTRY BACKGROUND ...........................................................................84 Cement chemist’s short hand notation .........................................................................84 Clinker production for Portland cement ......................................................................84 High belite cement clinker ...........................................................................................89 Calcium sulfoaluminate cement (CSA) .......................................................................89 Calcium aluminate cement (CAC) ..............................................................................91 MINERALS AS ALTERNATIVE TO LIMESTONE .............................................................93 General ........................................................................................................................93 Gypsum .......................................................................................................................93 Wollastonite .................................................................................................................94 Larnite, bredigite and calcio-olivine ............................................................................95 Spurrite and associated minerals .................................................................................95 Hydrogrossular ............................................................................................................96 Anorthite and anorthosite ............................................................................................96 CONCLUSIONS .....................................................................................................................96 REFERENCES .......................................................................................................................97 3 Microscopy of Clinker and Hydraulic Cements Paul E. Stutzman ABSTRACT ..........................................................................................................................101 INTRODUCTION ................................................................................................................101 PORTLAND CEMENT PHASE COMPOSITION ..............................................................102 CLINKER MICROSCOPY ..................................................................................................104 SPECIMEN PREPARATION FOR MICROSCOPY ...........................................................105 Materials for sample preparation ...............................................................................106 Preparation of clinker ................................................................................................106 Polished powder mounts of Portland cementitious materials ....................................107 Cutting and grinding ..................................................................................................107 Polishing ....................................................................................................................108 Etching for light microscopy .....................................................................................113 SRM clinker...............................................................................................................113 Point count analysis ...................................................................................................114 SCANNING ELECTRON MICROSCOPY ANALYSIS .....................................................119 SEM imaging of microstructure ................................................................................120 Image processing .......................................................................................................131 Direct methods for development of standard reference materials ............................133 Phase estimates by microscopy and quantitative XRD .............................................137 Certifi ed values by consensus means .......................................................................137 Application to cements ..............................................................................................137 vi Applied Mineralogy of Cement & Concrete ‒ Table of Contents SEM imaging of fl y ash .............................................................................................139 SUMMARY ..........................................................................................................................141 REFERENCES .....................................................................................................................143 4 Industrial X-ray Diffraction Analysis of Building Materials Roger Meier, Jennifer Anderson, Sabine Verryn ABSTRACT ..........................................................................................................................147 INTRODUCTION ................................................................................................................147 METHODOLOGY ...............................................................................................................149 Phase identifi cation with XRD ..................................................................................149 Phase quantifi cation by using X-ray diffraction data ................................................149 Full pattern cluster analysis .......................................................................................152 Computed tomography ..............................................................................................152 APPLICATIONS ...................................................................................................................154 Raw materials/quarry .................................................................................................154 Preheater/calciner ......................................................................................................156 Clinker/kiln ................................................................................................................156 Cement .......................................................................................................................158 Hydrated cement ........................................................................................................159 Concrete .....................................................................................................................163 SAMPLE PREPARATION ...................................................................................................164 CONCLUSION .....................................................................................................................166 REFERENCES .....................................................................................................................166 5 Rietveld Quantitative Phase Analysis of OPC Clinkers, Cements and Hydration Products Miguel A. G. Aranda, Ángeles G. De la Torre, Laura León-Reina BRIEF INTRODUCTION ....................................................................................................169 THE RIETVELD METHOD ................................................................................................170 General issues ............................................................................................................172 Structural description of the phases present in OPC materials..................................173 Whole-pattern quantitative phase analysis approaches .............................................177 SAMPLE PREPARATION AND DATA COLLECTION ....................................................179 SELECTED EXAMPLES OF RIETVELD QUANTITATIVE PHASE ANALYSIS ..........180 Clinkers......................................................................................................................181 Cements .....................................................................................................................185 Hydration products ....................................................................................................187 Durability studies ......................................................................................................190 Selective dissolution ..................................................................................................191 vii Applied Mineralogy of Cement & Concrete ‒ Table of Contents INTERCOMPARISON AND COMPARISON WITH OTHER METHODS .......................192 Bogue and reverse Bogue calculation .......................................................................193 Optical and scanning electron microscopies .............................................................193 Thermodynamic modeling.........................................................................................193 Thermal measurements ..............................................................................................194 Calorimetric data .......................................................................................................194 Nuclear Magnetic Resonance (NMR) spectroscopy .................................................194 GUIDELINES FOR RIETVELD QUANTITATIVE PHASE ANALYSES .........................195 Crystal structures .......................................................................................................195 Sample preparation and data collection .....................................................................196 Data analysis ..............................................................................................................197 Final check.................................................................................................................198 FINAL REMARKS AND OUTLOOK .................................................................................198 ACKNOWLEDGMENTS .....................................................................................................201 REFERENCES .....................................................................................................................201 6 Supplementary Cementitious Materials Ruben Snellings, Gilles Mertens, Jan Elsen INTRODUCTION ................................................................................................................211 DEFINITION AND CLASSIFICATION OF SUPPLEMENTARY CEMENTITIOUS MATERIALS .....................................................................................214 Defi nition ...................................................................................................................214 Classifi cation .............................................................................................................214 MINERALOGY AND CHEMISTRY OF SCMS .................................................................216 Natural SCMs ............................................................................................................216 Thermally activated SCMs ........................................................................................224 By-product SCMs ......................................................................................................231 THE POZZOLANIC REACTION ........................................................................................241 The pozzolanic reaction mechanism .........................................................................242 Pozzolanic activity .....................................................................................................248 Hydration mechanism and kinetics of blended cements ...........................................252 REACTION PRODUCTS .....................................................................................................253 Product assemblages ..................................................................................................254 Hydration thermodynamics ......................................................................................256 PROPERTIES OF MORTAR AND CONCRETE CONTAINING SUPPLEMENTARY CEMENTITIOUS MATERIALS ..................................................260 Properties of uncured mortar and concrete containing SCMs ...................................260 Properties of hardened mortar and concrete containing SCMs .................................261 Durability of mortar and concrete containing SCMs ................................................264 CONCLUSIONS ...................................................................................................................266 ACKNOWLEDGMENTS .....................................................................................................267 REFERENCES .....................................................................................................................268 viii Applied Mineralogy of Cement & Concrete ‒ Table of Contents 7 Deleterious Reactions of Aggregate With Alkalis in Concrete Maarten A.T.M. Broekmans INTRODUCTION ................................................................................................................279 Concrete in the built environment .............................................................................279 What is deleterious AAR? .........................................................................................280 Why is AAR important? ............................................................................................281 HISTORY AND BACKGROUND OF ASR .........................................................................282 First recognition ........................................................................................................282 Global and local acceptance of AAR.........................................................................282 Remediation and prevention ......................................................................................284 ORIGIN OF ALKALIS IN CONCRETE .............................................................................285 The NaO-equivalent .................................................................................................285 2 Alkali from raw materials for Portland clinkering ....................................................285 Infi ltrated alkali from seawater and deicers ...............................................................287 Alkali released from aggregate ..................................................................................291 ALKALI-REACTIVITY POTENTIAL OF ‘SILICA’ .........................................................295 Quartz properties and its solubility under ASR conditions .......................................295 Moganite, chalcedony and opal .................................................................................300 Solubility of silica under ASR conditions .................................................................301 ALKALI-SILICA REACTION PRODUCTS .......................................................................303 Dissolution of silica under ASR conditions ..............................................................303 Appearance and chemical composition of ASR gel ..................................................305 Gel crystalline structure .............................................................................................308 ALTERNATIVE ALKALI-REACTIVE MINERAL SPECIES ...........................................312 Natural and industrial glass .......................................................................................312 Common rock-forming silicate minerals ...................................................................313 Alkali-reactivity of carbonate rocks and minerals .....................................................317 Other alkali-reactive species not being minerals .......................................................321 LABORATORY ASSESSMENT OF ASR CONCRETE .....................................................321 Sample acquisition and handling ...............................................................................321 Impregnation-fl uorescence petrography ....................................................................324 Quantifi cation of ASR damage and development over time .....................................326 Characterization of the aggregate in ASR concrete ...................................................331 In situ chemical analysis of ASR gel by SEM-EDS or EPMA .................................335 THE CRYSTALLINITY INDEX OF QUARTZ...................................................................339 SELECTED TOPICS FOR FUTURE RESEARCH .............................................................340 Reliable identifi cation of quartz/silica properties governing alkali-reactivity ..........340 Extraction of alkali-reactive aggregate from fi eld concrete ......................................341 Dissolution of quartz/silica under ASR conditions ...................................................341 Nano-structure of ASR gel ........................................................................................341 Effect of lithium on ASR ...........................................................................................342 SUMMARY AND CONCLUSIONS ....................................................................................342 ACKNOWLEDGMENTS .....................................................................................................343 REFERENCES .....................................................................................................................343 ix Reviews in Mineralogy & Geochemistry 1 Vol. 74 pp. 1-82, 2012 Copyright © Mineralogical Society of America Calcium Aluminate Cements – Raw Materials, Differences, Hydration and Properties Herbert Pöllmann University of Halle-Wittenberg Von Seckendorffplatz 3 D-06120 Halle (Saale) Germany e-mail: [email protected] INTRODUCTION High alumina cement was used widely in the UK after World War I, expressing its higher content of aluminum oxide in comparison to Portland cement. Several descriptions of investi- gations on calcium aluminate cements appeared, starting around 1850, with a fi rst patent fi eld in 1888 (Scrivener and Capmas, in Hewlett 1998). More widely known is the work of Bied (1909, 1926) fi ling a patent in 1909 for the fabrication of cement using bauxite or some similar aluminum or iron-rich material, with low SiO-contents and limestone. In 1918, the trade name 2 Ciment Lafarge Fondue was used for the fi rst time. Meanwhile in the USA, Spackman (1908, 1910a,b) developed cementitious material marketed under the name of Alca natural cements. Several patents were applied and granted (Bates 1921). A description of non-Portland cements was given by Muzhen et al. (1992). The reason for looking into alternative cement materials was to develop cements with improved stability against sulfate corrosion. Nowadays, calcium aluminate cements are used specifi cally for their distinct properties (Brown and Cassel 1977), some of which are presented in Table 1. Calcium aluminate cements do have special applications and are therefore widely used despite the fact that worldwide fabrication is by no means comparable to OPCs (Höhl et al. 1936; Garcés et al. 1997; George 1976, 1980a,b, 1983, 1990, 1997; George and Montgomery 1992; George and Racher 1996; Gartner et al. 2002). Scrivener and Taylor (1990) and Scrivener et al. (1997a,b) described calcium aluminate cements and their use and microstructural developments. The use for experimental purposes was described by Auer et al. (1995). Thermal analyses for thermogravimetry of CAC-fraction and formation was discussed by Chudak et al. (1982, 1987). The CAC concretes and reactions were studied by Dunster et al. (1997, 2000) and Deloye et al. (1996) studied the so-called “Portland Fondu.” Raw materials CACs are mainly produced out of limestone and bauxite (Bolger 1997). Sometimes hydrated lime, laterite, bauxite (Valeton 1986; Sehnke 1995), or alumina is also used as raw material. Reduced qualities are mainly obtained by increased content of silica (<6-8 wt%) and moderate iron content. Also impurities like titanium, magnesium and alkali oxides reduce the quality due to the formation of other phases. The raw materials can also contain many different minerals in low quantities. The main phases are mentioned in Table 2. Different qualities of limestone, and especially bauxite, are on the market and infl uence the price of the fi nal product (Kiskyras 1960). Some special CAC can also contain manganese oxide in higher quantity, even up to the formation of a manganese cement (Pöllmann and Oberste-Padtberg 2001). 1529-6466/12/0074-0001$10.00 DOI: 10.2138/rmg.2012.74.1