ebook img

A probabilistic interpretation of the Volkenborn integral PDF

0.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A probabilistic interpretation of the Volkenborn integral

A PROBABILISTIC INTERPRETATION OF THE VOLKENBORN INTEGRAL A.BHANDARI(1) ANDC.VIGNAT(2) Abstract. In thispaper, weprovide aprobabilistic interpretation of the Volkenborn integral; thisallowsustoextendresultsbyT.KimetalaboutsumsofEulernumberstosumsofBernoulli numbers. We also obtain a probabilistic representation of the multidimensional Volkenborn integral which allows us to derive a multivariate version of Raabe’s multiplication theorem for thehigher-order BernoulliandEulerpolynomials. 2 1 0 1. Introduction 2 n The Volkenborn integral was introduced in 1971 by A. Volkenborn in his PhD dissertation and a subsequently in the set of twin papers [4]; a more recent treatment of the subject can be found in J [5]. The Volkenborn integral, or fermionic p−adic q−integral on Z , of a function f is defined as p 8 1 pN−1 1+q f(y)dµ (y)= lim f(x)(−q)x ] ˆZ −q N→+∞1+qpN T p Xx=0 N In particular, the q =1-Volkenbornintegral satisfies [1, eq. (1.6)] . 2 +∞ tn h e(x+y)tdµ (y)= ext = E (x) . at ˆZp −1 et+1 n=0 n n! X m where E (x) is the Euler polynomial of degree n. n [ Another interesting case is the q =0-Volkenborn integral which satisfies [5, p. 271] 1 text +∞ tn v e(x+y)tdµ (y)= = B (x) 1 ˆZ 0 et−1 n n! p n=0 0 X where B (x) is the Bernoulli polynomial of degree n. From this result we deduce the following 7 n 3 Theorem. If f(x) is analytic in a neighborhood of 0 then its q = 0-Volkenborn integral can be . 1 computed as the expectation 1 0 2 (1.1) f(x)dµ (x)=Ef x+ıL − 1 1 ˆZ 0 B 2 : p (cid:18) (cid:19) v where the random variable L follows the logistic distribution with density B i X (1.2) πsech2(πx), x∈R. r 2 a Moreover, its q =1-Volkenborn integral coincides with the expectation 1 f(x)dµ (x)=Ef x+ıL − ˆZ 1 E 2 p (cid:18) (cid:19) where the random variable L follows the hyperbolic secant distribution with density E (1.3) sech(πx), x∈R. Proof. These results can be proved by computing the characteristic functions associated to the logistic distribution t t Eexp(ıtL )= csch B 2 2 (cid:18) (cid:19) 1intherestofthispaper,weusethenotationEXf(X)fortheprobabilisticexpectation f(x)pX(x)dxwhere pX is the probability density function of the random variable X. When no ambiguity o´ccurs, we also denote Ef(X1,X2,...)theexpectation overallrandom variablesthatappearasarguments ofthefunctionf. 1 A PROBABILISTIC INTERPRETATION OF THE VOLKENBORN INTEGRAL 2 and to the hyperbolic secant distribution t Eexp(ıtL )=sech . E 2 (cid:18) (cid:19) (cid:3) The special case f(x) =xn yields the following moment representation for the Bernoulli poly- nomial of degree n n 1 (1.4) B (x)=E x+ıL − n B 2 (cid:18) (cid:19) and n 1 E (x)=E x+ıL − n E 2 (cid:18) (cid:19) for the Euler polynomial of degree n. Moreover, choosing x = 0 yields the following moment representationfor the n−th Bernoulli number n 1 B =B (0)=E ıL − n n B 2 (cid:18) (cid:19) and n 1 (1.5) E =E (0)=E ıL − n n E 2 (cid:18) (cid:19) for the n−th Euler number 2 where L and L follow respectively the logistic distribution (1.2) B E and the hyperbolic secant distribution (1.3). An important feature of the logistic and hyperbolic secant random variables is the following cancellation property: Lemma1. IfU isacontinuousrandomvariable uniformlydistributedover[0,1]andindependent B of L then B n 1 E x+ıL − +U =xn. B B 2 (cid:18) (cid:19) Accordingly, if U is aRademacher distributedrandom variable (Pr{U =0}=Pr{U =1}= 1) E E E 2 then n 1 E x+ıL − +U =xn. E E 2 (cid:18) (cid:19) Both results canbe shownconsidering the characteristicfunctions of the involvedvariables; for example, in the Bernoulli case, 1 Eexp t ıL − exp(tU )=1 B B 2 (cid:18) (cid:18) (cid:19)(cid:19) so that all integer nonzero moments of the random variable ıL − 1 +U vanish. B 2 B The Volkenborn integrals were used by Kim et al [1] to obtain non-trivial identities on Euler numbers E using integrals of the Bernstein polynomials defined as n n B (x)= xk(1−x)n−k, 0≤x≤1. k,n k (cid:18) (cid:19) In this paper, we show that the probabilistic representation (1.1) of the Volkenborn integral makes its computation very easy to handle. We illustrate this fact by extending the non-trivial identities of[1]to the case ofBernoullinumbers. In the secondsection, wederive the probabilistic equivalentofthe multidimensionalVolkenbornintegralsasintroducedin[2]andweuse itto prove a multivariate version of Raabe’s multiplication theorem for Bernoulli and Euler polynomials. 2notethatitdiffersfromthen−thEulernumberofthefirstkinddefinedbyE˜n=2nEn(cid:0)1(cid:1). 2 A PROBABILISTIC INTERPRETATION OF THE VOLKENBORN INTEGRAL 3 2. Identities for Bernoulli numbers and polynomials 2.1. first-order identity. In order to obtain non-trivial identities on Bernoulli numbers, we re- place the Bernstein polynomials used by Kim et al by the Beta polynomials B (x)=xk(1+x)n−k, 0≤k ≤n k,n and, with X =ıL − 1, compute the expectation EB (X) in two different ways: B 2 k,n - the first way is by applying the binomial formula n−k n−k n−k n−k (2.1) EB (X)=EXk Xj = B k,n j j j+k j=0(cid:18) (cid:19) j=0(cid:18) (cid:19) X X - the second way is by expressing X =(X +1)−1 so that k k k k (2.2) EB (X)=E (−1)j(1+X)(n−k)+(k−j) = (−1)j{B +δ }; n,k j j n−j n−j−1 j=0(cid:18) (cid:19) j=0(cid:18) (cid:19) X X since j ≤k ≤n, the Kronecker adds a term n−1 (−1)n−1 if k =n−1 or n (−1)n−1 if k =n n−1 n−1 and no term otherwise. We conclude the following (cid:0) (cid:1) (cid:0) (cid:1) Theorem 2. The Bernoulli numbers satisfy k k (−1)jB if 0≤k ≤n−2, n≥2 n−k n−k j=0 j n−j B = k k (−1)jB +(−1)n−1 if k =n−1, n≥1 j j+k Pj=0(cid:0)j(cid:1) n−j Xj=0(cid:18) (cid:19) Pkj=0(cid:0)kj(cid:1)(−1)jBn−j +n(−1)n−1 if k =n, n≥0 We remark that the case k=Pn re(cid:0)ad(cid:1)s n n B = (−1)jB +n(−1)n−1 n j n−j j=0(cid:18) (cid:19) X 2.2. polynomial identities. From (1.4), we deduce that the above results can be extended to the case of Bernoulli polynomials by choosing X =x+ıL − 1. We deduce the following B 2 Theorem 3. The Bernoulli polynomials satisfy, for all 0≤k ≤n, n−k k n−k k (2.3) B (x)= (−1)jB (x)+(nx−(n−k))xn−k−1(x−1)k−1 j j+k j n−j j=0(cid:18) (cid:19) j=0(cid:18) (cid:19) X X Proof. The left-hand side is a direct consequence of that of (2.1); the left-hand side of (2.2) with X =x+ıL − 1 yields B 2 k k (−1)jB (x+1) j n−j j=0(cid:18) (cid:19) X and since B (x+U) = xn−j, we deduce B (x+1)−B (x) = (n−j)xn−j−1. replacing n−j n−j n−j in the above sum yields the result. (cid:3) We note that the case k =0 reads n n B (x)=B (x)+nxn−1, j n j j=0(cid:18) (cid:19) X which can be restated as B (x+1)−B (x)=nxn−1 n n and is nothing but the expression of the cancellation principle EB (x+U )=xn−1. n−1 B A PROBABILISTIC INTERPRETATION OF THE VOLKENBORN INTEGRAL 4 3. A polynomial extension to Kim’s identity In[1],thefollowingidentityisderivedusingtheBernsteinpolynomialsB (x)= n xk(1−x)n−k k,n k n−k n−k k k (cid:0) (cid:1) (−1)jE = (−1)k−jE +2δ . j j+k j n−j k j=0(cid:18) (cid:19) j=0(cid:18) (cid:19) X X We now provide the following polynomial extension of this identity Theorem 4. The Euler polynomials satisfy n−k k n−k k (−1)jE (x)=(−1)n+k+1 E (x)+2xk(1−x)n−k. j j+k j n−j j=0(cid:18) (cid:19) j=0(cid:18) (cid:19) X X Proof. We start from the identity n−k k n−k k (−1)jxj+k = (−1)k−j(1−x)n−j j j j=0(cid:18) (cid:19) j=0(cid:18) (cid:19) X X obtained by expanding either (left-hand side) the (1−x)n−k term of the (right-hand side) xk = (x−1+1)k in the expression of the Bernstein polynomial. Replacing the variable x by x = X+ıL − 1 and remarking that E 2 1 n−j E(1−x)n−j =E 1−X− ıL − =(−1)n−jE (X −1) E n−j 2 (cid:18) (cid:18) (cid:19)(cid:19) with, by the cancellation principle, E (X−1)+E (X)=2(X −1)n−j, n−j n−j we deduce k k k k (−1)k−j(1−x)n−j = (−1)k−j(−1)n−j −E (X)+2(X −1)n−j j j n−j Xj=0(cid:18) (cid:19) Xj=0(cid:18) (cid:19) n o k k k k = (−1)n+k+1 E (X)+2 (−1)k−j(1−X)n−j j n−j j j=0(cid:18) (cid:19) j=0(cid:18) (cid:19) X X this last sum being equal to 2Xk(1−X)n−k, hence the result. (cid:3) We notice that the case X =0 is n−k k n−k k (−1)jE =(−1)n+k+1 E +2δk. j j+k j n−j j=0(cid:18) (cid:19) j=0(cid:18) (cid:19) X X It can be shown that k k k k (−1)n+k+1 E = (−1)k−jE j n−j j n−j j=0(cid:18) (cid:19) j=0(cid:18) (cid:19) X X as follows: using the moment representation (1.5) the right-hand side reads n−k k n−k k 1 1 1 1 E ıL − 1− ıL − =E −ıL − 1− −ıL − E E E E 2 2 2 2 (cid:18) (cid:19) (cid:18) (cid:18) (cid:19)(cid:19) (cid:18) (cid:19) (cid:18) (cid:18) (cid:19)(cid:19) by the symmetry of the hyperbolic secant distribution, and is thus equal to 1 n−k 3 k 1 (−1)n−kE ıL + ıL + =Ef ıL − +1 E E E 2 2 2 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18)(cid:18) (cid:19) (cid:19) with f(x)=(−1)n−kxn−k(x+1)k. By the cancellation principle 1 1 Ef ıL − +1 +f ıL − =2f(0)=0 E E 2 2 (cid:18)(cid:18) (cid:19) (cid:19) (cid:18) (cid:19) so that the right-hand side if equal to −Ef ıL − 1 which coincides with the left-hand side; E 2 hence we recover Kim’s identity. (cid:0) (cid:1) A PROBABILISTIC INTERPRETATION OF THE VOLKENBORN INTEGRAL 5 4. Multidimensional Volkenborn integral 4.1. Introduction. In [2], a multivariate version of the Volkenborn integral is defined as f(x)dµ (x)= ... f(x ,...,x )dµ (x )...dµ (x ). ˆ 0 ˆ ˆ 1 k 0 1 0 k In particular, it satisfies, with y∈Rk and the notation |y|= k y , i=1 i k t P e(x+|y|)tdµ (y)= ext. ˆZkp 0 (cid:18)et−1(cid:19) ThismultivariateversionoftheVolkenbornintegralcanagainbe expressedasanexpectationover a simple random variable as shown now. 4.2. Momentrepresentationandelementaryproperties. TheBernoullipolynomialsB(k)(x|a) n of order k and degree n with x∈ R with parameter a ∈Rk, also called Nörlund polynomials, are defined by the generating function [3, 1.13.1] +∞ tn k a t B(k)(x|a) =ext j n n! eajt−1 n=0 j=1(cid:18) (cid:19) X Y and the corresponding Bernoulli numbers B(k)(a) by n k a t B(k)(a)=B(k)(0|a)= j . n n eajt−1 j=1(cid:18) (cid:19) Y In particular, taking a =1 for all j ∈[1,k] and denoting j B(k)(x)=B(k)(x|1,1,...,1) n n we deduce +∞ tn e(x+|y|)tdµ (y)= B(k)(x) . ˆZkp 0 nX=0 n n! We provide a multidimensional extension of the moment representation (1.4) as follows Theorem 5. The Bernoulli polynomials B(k)(x|a) satisfy n n k 1 (4.1) B(k)(x|a)=E x+ a ıL(j)− n  j B 2  j=1 (cid:18) (cid:19) X   where the random variables L(j) are independent and follow the logistic distribution (1.2). B 1≤j≤k As a consequence, the Benrnouloli numbers B(k)(a) satisfy n n k 1 (4.2) B(k)(a)=E a ıL(j)− n  k B 2  j=1 (cid:18) (cid:19) X and the multivariate Volkenborn integral, with x∈Rk,  k 1 f(|x|)dµ (x)=Ef x +ıL(j)− . ˆZkp 0 Xj=1(cid:18) j B 2(cid:19)   Proof. Let us compute the generating function n +∞Ex+ k aj ıL(Bj)− 12  tnn! =Eexptx+t k aj ıL(Bj)− 12 =etx k Eetaj(cid:16)ıLB(j)−21(cid:17) n=0 j=1 (cid:18) (cid:19) j=1 (cid:18) (cid:19) j=1 X X X Y with,for a logistic distributedrandom variable L ,  j Eetaj(cid:16)iLB(j)−12(cid:17) = ajt eajt−1 hence the result. (cid:3) A PROBABILISTIC INTERPRETATION OF THE VOLKENBORN INTEGRAL 6 The moment representation (4.1) allows to recover easily some well-known results about the higher-order Bernoulli polynomials. Proposition 6. The higher-order Bernoulli polynomials satisfy the identities x (4.3) B(1)(x|a)=anB , n n a (cid:16) (cid:17) n n (4.4) xlB(k) (y|a)=B(k)(x+y|a) l n−l n l=0(cid:18) (cid:19) X and a +···+a (4.5) B(k) 1 k|a =0. 2n+1 2 (cid:18) (cid:19) Proof. Identity (4.3) is a direct consequence of the moment representation (4.1); identity (4.4) is obtained using a binomial expansion of (4.1) and identity (4.5) by computing 2n+1 k a +···+a B(k) 1 k|a =E ı a L(l) 2n+1 2 l B (cid:18) (cid:19) l=1 ! X and using the fact that the logistic density (1.2) is an even function. (cid:3) Wealsodeducestraightforwardlyfromamultinomialexpansionoftherepresentations(4.1)and (4.2) the following Proposition 7. The higher-order Bernoulli polynomials satisfy n B(k)(x +···+x |a)= B (x |a )...B (x |a ) n 1 k i ,...,i i1 1 1 ik k k i1+·X··+ik=n(cid:18) 1 k(cid:19) and the higher-order Bernoulli numbers n B(k)(a)= B (a )...B (a ) n i ,...,i i1 1 ik k i1+·X··+ik=n(cid:18) 1 k(cid:19) These results extend Corollary 5 and Corollary 6 in [2] which correspond to the case a = (1,...,1). 4.3. Kim’s identity for Nörlund polynomials. In order to highlight the efficiency of the mo- mentrepresentation(4.1),wederivenowanextensionofKim’sidentity(2.3)tothecaseofNörlund polynomials as follows. Theorem 8. For p∈N and 0≤k ≤n, n−k k n−k k B(p) (x)= (−1)j B(p) (x)+(n−j)B(p−1) (x) . j j+k j n−j n−j−1 Xj=0(cid:18) (cid:19) Xj=0(cid:18) (cid:19) n o Proof. We start from the identity n−k k n−k k (4.6) Xj+k = (−1)j(1+X)n−j j j j=0(cid:18) (cid:19) j=0(cid:18) (cid:19) X X and replace X by x+ p ıL(l)− 1 so that, from 4.1, the left-hand side reads l=1 B 2 (cid:16) (cid:17) P n−k n−k B(p) (x) j j+k j=0(cid:18) (cid:19) X while the right-hand side is k k (−1)jB(p) (x+1). j n−j j=0(cid:18) (cid:19) X A PROBABILISTIC INTERPRETATION OF THE VOLKENBORN INTEGRAL 7 Since EB(p) (x+U) = B(p−1) (x) with U uniform on [0,1], we deduce by the cancellation n−j−1 n−j−1 principle B(p) (x+1)−B(p) (x) n−j n−j =B(p−1) (x) n−j n−j−1 which yields the final result. (cid:3) 4.4. Kim’s identity extended to multidimensional Euler polynomials. We now provide a multidimensional version of the polynomial Kim identity derived in Theorem 4 as follows: Theorem 9. The multidimensional Euler polynomials satisfy the identity n−k k n−k k (−1)jE(p) (x) = (−1)n+k+1 E(p) (x) j j+k j n−j j=0(cid:18) (cid:19) j=0(cid:18) (cid:19) X X k k +2(−1)n+k E(p−1)(x−1) j n−j j=0(cid:18) (cid:19) X Proof. Starting again from identity (4.6), we take x=X+ p ıL(l)− 1 and copute l=1 E 2 (cid:16) (cid:17) p n−j P 1 (1−x)n−j = 1−X− ıL(l)− =(−1)n−jE(p) (X −1). E 2 n−j l=1(cid:18) (cid:19)! X However,by the cancellation rule E(p) (X −1)+E(p) (X)=2E(p−1)(X −1) n−j n−j n−j and the result follows. (cid:3) 4.5. Raabe’s and Nielsen’s multiplication theorem for Nörlund polynomials. Raabe’s usual multiplication theorem m−1 l m1−nB (mx)= B x+ n n m l=0 (cid:18) (cid:19) X and m−1 l m−nE (mx)= (−1)lE x+ , m odd n n m l=0 (cid:18) (cid:19) X and Nielsen’s multiplication theorem m−1 2 l m−nE (mx)=− (−1)lB x+ , m even n n+1 n+1 m l=0 (cid:18) (cid:19) X are an interesting feature of the Bernoulli polynomials since, as noted by Nielsen, [8, p. 54] It is very curious, it seems to me, that there exist polynomials, with arbitrary degree,thatsatisfyequationsoftheaboveform. However,itiseasytoprovethat, uptoanarbitraryconstantfactor,theB (x)andE (x)aretheonlypolynomials n n that satisfy the mentioned property. Usingthe momentrepresentationandbasicresultsfromprobabilitytheory,weproposethe follow- ing extension of Raabe’s celebrated multiplication theorem to the multivariate case. Theorem 10. If m∈N, m−1 k 1 (4.7) mk−nB(k)(mx|a)= B(k) x+ a l |a n n m i i ! l1,.X..,lk=0 Xi=1 and if moreover m is odd, m−1 k 1 (4.8) m−nE(k)(mx|a)= (−1)l1+···+lkE(k) x+ a l |a . n n m i i ! l1,.X..,lk=0 Xi=1 A PROBABILISTIC INTERPRETATION OF THE VOLKENBORN INTEGRAL 8 Proof. Letus denote U˜(i) a setof k discrete randomvariablesindependent anduniformly 1≤i≤k distributed in the setn{0,.o..,m−1} and U(i) a set of k continuous random variables B 1≤i≤k independent and uniformly distributed on tnhe intoerval [0,1]. For the Bernoulli case, we have n m−1 k k k 1 1 1 1 B(k) x+ a l |a =E x+ a ıL(i)− + a U˜(i) mk n m i i i B 2 m i l1,.X..,lk=0 Xi=1 ! Xi=1 (cid:18) (cid:19) Xi=1 ! n k k 1 1 = E mx+m a ıL(i)− + a U˜(i) mn i B 2 i i=1 (cid:18) (cid:19) i=1 ! X X n k k k k 1 1 1 = E mx+m a ıL(i)− + a U˜(i)+ a ıL˜(i)− + a U(i) mn i B 2 i i B 2 i B i=1 (cid:18) (cid:19) i=1 i=1 (cid:18) (cid:19) i=1 ! X X X X Now we use the fact that U˜(i)+U(i) has the same distribution as mU(i) so that we obtain B B n k k k 1 1 1 E mx+m a ıL(i)− + a ıL˜(i)− +m a U(i) mn i B 2 i B 2 i B i=1 (cid:18) (cid:19) i=1 (cid:18) (cid:19) i=1 ! X X X and applying the cancellation principle, we deduce n k 1 1 1 E mx+ a ıL˜(i)− = B(k)(mx|a). mn i B 2 mn n i=1 (cid:18) (cid:19)! X For the Euler case, we need to use a signed measure (and then depart temporarily from the probabilistic context) defining the set Uˆ(i) of k discrete variables independent such as 1≤i≤k each Uˆ(i) takes values in {0,...,k,...,mn−1}owith a weight (−1)k. Then n m−1 k k k 1 1 1 (−1)l1+···+lkE x+ a l |a =E x+ a ıL(i)− + a Uˆ(i) n m i i i E 2 m i l1,.X..,lk=0 Xi=1 ! Xi=1 (cid:18) (cid:19) Xi=1 ! n k k 1 1 = E mx+m a ıL(i)− + a Uˆ(i) mn i E 2 i i=1 (cid:18) (cid:19) i=1 ! X X n k k k k 1 1 1 = E mx+m a ıL(i)− + a Uˆ(i)+ a ıL˜(i)− + a U(i) mn i E 2 i i E 2 i E i=1 (cid:18) (cid:19) i=1 i=1 (cid:18) (cid:19) i=1 ! X X X X wherenow U(i) areindependentRademacherrandomvariablesand,sincemisodd,eachU(i)+ E E Uˆ(i) has thensamoe distribution as mU(i) so that we obtain E n k k k 1 1 1 E mx+m a ıL(i)− + a ıL˜(i)− +m a U(i) mn i E 2 i E 2 i E i=1 (cid:18) (cid:19) i=1 (cid:18) (cid:19) i=1 ! X X X and from the cancellation principle, we deduce the result. (cid:3) Raabe’s identity (4.7) and (4.8) are in fact given without proof in [7, eq. (1.6) and (1.7)]. The case for m even is not provided, so we prove now Theorem 11. With n∈N and m even, 1 k n! k m−1 1 k mk−n − a E(k) (mx)= (−1)l1+···+lkB(k) x+ a l |a . 2 (n−k)! i n−k n m i i (cid:18) (cid:19) iY=1 ! l1,.X..,lk=0 Xi=1 ! A PROBABILISTIC INTERPRETATION OF THE VOLKENBORN INTEGRAL 9 Proof. Let us define a variable W ={0,...,m−1} with weights (−1)l. Then the right-hand side reads, with B =ıL(i)− 1 and E =ıL(i)− 1, i B 2 i E 2 n n k k W E x+ a i +B = m−nE x+ a W +mB +E +U(i) i m i i i i i E Xi=1 (cid:18) (cid:19)! Xi=1 (cid:16) (cid:17)! k = m−nE x+ a W +mB +U(i) n i i i E ! Xi=1 (cid:16) (cid:17) but it can be checkedthat each W +U(i) takes values 0 and m with respective weights 1 and −1 i E 2 2 so that we obtain k k−1 k k−1 1 − m−n E x+m a B + W +U(i) +ma −E x+m a B + W +U(i) 2 n i i i E k n i i i E ! !! Xi=1 Xi=1(cid:16) (cid:17) Xi=1 Xi=1(cid:16) (cid:17) which coincides with k k−1 k−1 1 1 − m−nE x+m a B + W +U(i) +ma U(k) =− m−n(ma )nE x+ a W +mB +U(i) 2 n i i i E k B 2 k n−1 i i i E ! ! Xi=1 Xi=1(cid:16) (cid:17) Xi=1 (cid:16) (cid:17) since ma B and ma U(k) cancel out. We are now back, up to a factor, to the same quantity as k k k B before except that n is replaced by n−1 and k by k−1, hence the result. (cid:3) References [1] T. Kim, J. Choi, Y.-H. Kim and C. S. Ryoo, On the Fermionic p-adic integral representation of Bernstein polynomials associated with Euler numbers and polynomials, Journal of Inequalities and Applications,Volume2010(2010), ArticleID864247 [2] M.-S. Kim and J.-W. Son, On a multidimensional Volkenborn integral and higher order Bernoulli numbers,Bull.Austral.Math.Soc.,65,59-71,2002 [3] H.Bateman,HigherTranscendental Functions,vol.1,KriegerPubCo,1981 [4] A. Volkenborn: Ein p-adisches Integral und seine Anwendungen I and II, Zeitschrift manuscripta mathematica, 1972,7-4,342-373and1974,12-1,17-46,Springer-Verlag [5] A.M.Robert, ACourseinp−adicAnalysis,Graduate TextsinMathematics198,2000, Springer [6] J.L. Raabe, Zurückführung einiger Summen und bestimmten Integrale auf die Jacob Bernoullische Function,Journal fürdiereineundangewandte Mathematik, 1851,42,348-376 [7] L.Carlitz,TheMultiplicationFormulasfortheBernoulliandEulerPolynomials,Mathematics Maga- zine,27-2,59-64,1953 [8] N.Nielsen,Traitéélémentaire desnombresdeBernoulli,Gauthier-Villars,1923 (1) A.Bhandari was with the Biomedical Imaging Laboratory, E.P.F.L., Lausanne, Switzerland, duringthecompletionofthiswork(2)InformationTheoryLaboratory,L.T.H.I.,E.P.F.L.,Lausanne, Switzerland E-mail address: [email protected], [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.